

Anton PETROV1, Olga VESELSKA2, Elena POPOVA3,

Oleksandr PETROV4, Ruslana ZIUBINA5

WYBRANE ASPEKTY ZWIĄZANE Z NIEZAWODNOŚCIĄ

OPROGRAMOWANIA

Streszczenie: Dynamika badań nad niezawodnością oprogramowania znacznie przyspieszyła

w ostatnim okresie i możemy stwierdzić, że badania są prowadzone bardzo intensywnie,

a w niektórych przypadkach wyprzedza intensywność badań nad niezawodnością sprzętu

systemów informatycznych. Niezawodność oprogramowania jest znacznie ważniejsza od

innych jego cech, takich jak czas działania, i chociaż bezwzględna niezawodność

współczesnego oprogramowania jest pozornie nieosiągalna, nadal nie ma powszechnie

przyjętej miary niezawodności programów komputerowych. W artykule przeanalizowano

przyczyny tej sytuacji i zaproponowano podejście do rozwiązania problemu. W artykule

poruszono kwestię ogólnej charakterystyki cyklu życia oprogramowania systemów

informatycznych. Rozważane są pytania o niezawodność aplikacji oprogramowania oraz

wykorzystanie oprogramowania zapewniającego opcję fail-safe (czyli bezpiecznego nawet

w sytuacji uszkodzenia). Przedstawiono również podstawowe typy tzw. programów

antywirusowych, które prowadzą do nieprawidłowego funkcjonowania systemów

informatycznych. Dużo uwagi poświęcono przedstawieniu niektórych znanych modeli

wykorzystywanych do debugowania i obsługi oprogramowania. Tak, więc niniejszy artykuł

przeglądowy składa się z czterech części: tworzenia procesów oprogramowania systemów

informatycznych, niezawodności oprogramowania systemów informatycznych, wykorzystania

programów zapewniających bezpieczeństwo oraz oszacowania niezawodności

oprogramowania na podstawie wyników regulacji i normalnej pracy.

Słowa kluczowe: niezawodność oprogramowania, oprogramowanie odporne na awarie,
programowanie

SOME ASPECTS OF A SOFTWARE RELIABILITY PROBLEM

Summary: Obviously, the dynamism of software reliability research has speeded up

significantly in the last period, and we can state the fact that its intensity is approaching,

and in some cases is ahead of the information systems hardware reliability research intensity.

Reliability of software is much more important than its other characteristics, such as runtime,

and although the absolute reliability of modern software is apparently unattainable, there is still

1 Federal State Budgetary Educational Institution of Higher Education “Kuban State Agrarian

University named after I.T. Trubilin”, Krasnodar, Russia, anton.a.petrov@gmail.com
2 University of Bielsko-Biala, Bielsko-Biala, Poland, oveselska@ath.bielsko.pl.
3 Kuban State Agrarian University, anton.a.petrov@gmail.com
4 AGH University of Science and Technology, Krakow, Poland, asp1951@gmail.com
5 University of Bielsko-Biala, Bielsko-Biala, Poland, rziubina@ath.bielsko.pl

218 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

no generally accepted measure of reliability of computer programs. The article analyzes the

reasons for the situation and offers an approach to solving the problem. The article touches

upon the issue of general characteristics of information systems software life cycle. Considered

software application reliability questions and use of fail-safe ensuring programming. Also

presented basic types of so-called virus programs that lead to abnormal functioning of

information systems. Much attention is given to presenting some known models used for

software debugging and operating. So, this review paper consists of four sections: information

systems software process creation, reliability of information systems software, using of fail-

safe programs and estimation of software reliability according the results of adjusting

and normal operation.

Keywords: software reliability, software resistant against breakdowns, programming

1. Information Systems Software Development Process

1.1. Problem Overview

To ensure the reliability of programs, many approaches have been proposed, including

organizational development methods, various technologies and technological

software tools, which require significant resources. However, the lack of universally

accepted criteria for reliability does not allow us to answer the question of how much

more reliable the software becomes in compliance with the proposed procedures and

technologies. Thus, the priority of the task of assessing reliability should be higher

than the priority of the task of ensuring it, which is not observed.

Analyzing existing publications, we can conclude – the issue of ensuring the reliability

of programs is considered more important than the question of its evaluation. The

situation looks paradoxical: it is obvious that before improving some characteristic,

one must learn to measure it, it is also necessary to have a unit of measurement. The

main reason for this situation is rooted in the fact that the source of unreliability of the

programs is the errors contained in them, and if there are no errors, then the program

is reliable. Essentially, all measures to ensure the reliability of programs are aimed at

minimizing (if not eliminating at all) errors during development and at the earliest

possible time to identify and eliminate them after the program is made. It should be

noted that error-free programs, of course, exist, but modern software systems are too

large and almost inevitably contain errors. Although this circumstance is noted by

many authors and is known to any practical programmer, there seems to be a

psychological barrier that does not allow recognizing the fact that errors in software

are inevitable reality. Since there is no exact criterion for determining the maximum

size of an error-free program, there is always the hope that they will not remain in this

software system.

There is another psychological circumstance. As you know, the issue of reliability for

the equipment is well developed. The source of unreliability of the equipment is

objective factors that are not subject to man (power surges, alpha particles, etc.),

therefore, humanity has long come to terms with the idea that absolutely reliable

equipment does not exist, and we can only talk about the degree of reliability

expressed in some units (for example, the average time between two consecutive

failures). The source of insecurity is the error programs that people who create and

 Some aspects of a software reliability problem 219

use them make, so it seems that the only problem is to make (or teach) them work

correctly.

The reason is that the problem of choosing the unit of measurement for the reliability

of a computer program cannot be solved within the framework of the industrial

approach, which currently occupies an increasingly dominant position in

programming. The most typical example is the use, by analogy with equipment, as a

measure of the reliability of the average time program between two consecutive

erroneous operations.

The analogy method, of course, is universal, but we should not forget that any analogy

has limits of applicability. In this case, since we are talking about a fundamental

concept (unit of measurement), you should not just transfer the reliability

characteristics of the equipment to the programs but use more fundamental analogies.

First, it is useful to recall where the reliability characteristics of the equipment come

from. Reliability, in the final analysis, is a statistical concept, i.e. it is assumed that

there is a certain (sufficiently large) number of identical samples, tests, etc., there is

also an element of randomness. The study of random phenomena is devoted to a

special section of mathematics: probability theory. The basic concept of this theory is

the space of elementary events (sample space, space of outcomes), on which a certain

(probabilistic) measure is specified. The random variable, according to the theory, is

a function defined on the space of elementary events. Finally, as a measure of

reliability, some characteristics of a random variable are used (as a rule, mathematical

expectation).

Thus, a consistent probabilistic approach to the study of reliability consists in

analyzing the object under study (aircraft, security systems, computer programs, etc.),

constructing, based on "physical" considerations about its nature, spaces of

elementary events, introducing a probability measure on them and consideration of

random variables.

Unfortunately, the first stage of research - the analysis of an object and the

construction of spaces of elementary events - is usually omitted and immediately

proceed to the consideration of random variables, losing sight of the fact that a random

variable is actually a function defined on the space of elementary events.

Before talking about the reliability of the object, it should be clarified what is meant

by the object. As you know, a computer program has several different forms (or

representations): external specifications, source code, executable code, etc. The

generally accepted point of view is that a program is an object that is invariant with

respect to the forms of its representation. According to this point of view, external

specifications, source codes in languages of different levels, as well as executable

codes for different processors, have different forms of representing the same program.

This point of view is useful in software development, because it allows you to identify

the most essential for the application program properties that are common to all its

representations, but it is unproductive if, for example, we are talking about such a

quantitative characteristic as execution time: it is clear that this characteristic refers

only to one of the forms of representation - the executable code and, in addition,

depends not only on the program, but also on the type of processor.

At an intuitive level, the concept of program reliability reflects the fact that it cannot

always give the correct result. This means that the reliability of a program is a

characteristic of its executable code. The executable code corresponds to the source

text in the same way as, for example, the electric motor and its drawings: we can talk

220 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

about the reliability of the manufactured product, but it makes no sense to talk about

the reliability of the description, drawing, text. Two functionally identical programs

written in different languages or prepared for different types of machines or for the

same machine, but using different compilers, should be considered different in terms

of reliability. A program is considered correct if it does not contain errors. Such a

program does not give incorrect results, i.e. she is reliable. This fact gave rise to a

false idea that the number of errors in the program can be considered the most natural

measure of reliability [1]. Quite a lot of work has been done, in which various methods

were proposed for estimating the number of errors remaining in the program

according to the results of its testing, including the method of “clogging” with known

errors, however, as the considerations below show, the number of errors in the

program has nothing to do with it reliability: the number of errors in the program is

the “unobservable” value; it is not the errors themselves that are observed, but the

result of their manifestation.

Incorrect operation of the program may be the result of not one, but several errors at

once.

Errors can compensate each other, so that after fixing a single error, the program may

start to "work worse." Reliability characterizes the frequency of occurrence of errors,

but not their number; at the same time, it is well known that errors occur at different

frequencies: some errors remain undetected after many months and even years of

operation, but, on the other hand, it is not difficult to give examples where one single

error leads to incorrect operation of the program for any initial data , i.e. to zero

reliability. It should also be noted that if the number of errors is considered as a

measure of reliability, then in the terminology of probability theory this number is a

random variable, but the main question - in which space of elementary events it is

assigned - was not addressed anywhere.

Finally, it is important to emphasize that, from the point of view of reliability, as a

result of error correction or any other correction, a new program with a different

reliability indicator than before correction is obtained. Thus, the number of errors in

the program characterizes rather than the program, but its manufacturers and the tools

used [2].

1.2. The life cycle of a software

The life cycle of a software (product) begins with the determining of its technical

project development and ends at termination of its use [1].

There are following processes that executed during the life cycle of the software: five

basic processes; eight supporting and four organizational processes.

Basic processes of life cycle structure consist of five processes that serve to the major

constituents during the software life cycle.

The major constituencies are the subjects that initiate, develop, operate and conduct

software maintenance. The main participants are customer, supplier, developer,

operator and software maintenance supporter. The main procedures include the

following steps:

- order – specifies the actions of the customer organization which order system,

software product or software service,

- supply – establishes the supplier organization actions that provide the system

software product or the software service,

 Some aspects of a software reliability problem 221

- development – defines the actions of developer’s organization that identifies and

designs the software,

- operation – sets the actions of operator-organization that provides the (automated)

services of information system in its current state to the users,

- support – determines the action of maintainer organization which provides services

in support of the software, therefore manages modification of the software in order to

maintain it in proper and operational condition. These processes involve the transfer

and removal of software.

The support is considered as an integral part of the process that attends the latter; it

has a clearly defined purpose and contributes to the successful software quality

implementation. The process of support is applied and implemented in the

proceedings according to its requirements [3]. The structure of the software life cycle

support process includes the following proceedings:

- documentation – defines the steps to register the information, which was obtained

during the life cycle course,

- configuration – defines actions regarding the software configuration management,

- quality assurance – determines the actions to acquire objective assurance that the

software products and processes are ready to meet the specified requirements and

adhere to its established plans.

As a method of quality assurance processes, it can be used shared inspection, auditing,

verification and validation:

- Verification – defines the actions of the customer, supplier or independent

participant about verification software with varying degrees of depth, depending on

the software features.

- Validation – defines the actions of the customer, supplier or independent participant

regarding the obtained in the frameworks of programming project; software validation

conducting.

- Shared scrutiny – determines the actions to assess the status and results of a definite

action. This process can be applied by any two members, one of which (the party that

review) evaluates actions of another party (party whose actions are reviewed) in a

mutual discussion.

- Audit – defines actions to determine compliance with requirements, plans and

contract. This process can be applied by any two members, one of which (the

participant which checks) conducts an audit of the software or the actions of another

participant (the participant which is being checked).

- Problem solving – identifies actions for analysis and removal of problems (including

non-compliance), of any category of their nature and causes that were identified

during the development, operation, maintenance or during other processes

performing.

Organizational processes regarding the software lifecycle are used by an organization

on order to establish and implement the basic structure which consists of life cycle

interconnected processes and pertinent personnel, as well as for structures and

processes continuous improvement. Their implementation is usually beyond the scope

of improvement of specific projects and contracts, but the experience gained in

projects and contracts can be used for organization performance improvement.

Organizational processes include processes:

- controls – defines the actions regarding control, including project management

during life cycle,

222 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

- infrastructure making – defines the essential steps for the basic structure of the life

cycle processes building,

- foundation – defines the basic steps which an organization (that may be a customer,

supplier, developer, operator, developer or manager of a process), conducts in order

to create, measure, control and improve the processes of life cycle that it supports,

- training – determines the actions to provide appropriate staff schooling.

2. Reliability of information systems software

Software reliability is the ability of a software product to fail to perform certain

functions under specified conditions for a given period of time with a high probability.

The degree of reliability is characterized by the probability of the software product

working without failure for a certain period of time. Programs for modern information

systems can accrue significant number (hundreds, thousands, tens or hundreds of

thousands) of simple commands. For many reasons at writing programs it may be

revealed the errors. In the environ of programmer's humor, they say, there is no

software without bugs, but there are programs with errors not found. Blunders are

detected at the stage of working out the programs, but to check the program totally

according all possible modes is not usually viable, as result there is no conviction that

all errors are found [3-5]. There used a statistical approach to the process of errors

detecting during the programming analysis.

Such process can be characterized according the function:

 (1)

where – number of identified and corrected errors per time unit in the program,

which has – number of commands.

 (2)

where – number of identified and corrected errors during time t per one

command.

Accordingly:

 (3)

Function can be determined experimentally during pilot testing of program by

means of fixing the detected errors number. Problem of definition is simplified

if:

 (4)

R

tf)(

)(tf

R

t

ttt

dt

d

R

tf nnn

∆
−∆+==)()()(εεε

)(tnε

=
t

n dttf
R

t
0

)(
1

)(ε

)(tf

)(tf

0

0

0)(
τ

τ
ε t

etf
−

=

 Some aspects of a software reliability problem 223

where and are parameters which are determined during working out.

Then:

 (5)

At τ→ ∞ or . From there it follows that is the total

number of errors in the program prior to testing. Since the testing process cannot

subsist too lengthy then in the program always will remain some errors:

 (6)

where – the number of errors found per one command. If to anticipate that

errors are uniformly distributed throughout the program, the occurrence probability

of errors ����during will be proportional to the tempo pace of information

system (that is the average number of commands changes per time unit) and to the

number of errors left in the program, that is:

���� = �����	� (7)

Pursuing the analogy between the process of errors and failures of objects

����� =
	�� it may be concluded that the intensity of errors does not depend

on time but is determined only by the interval at which it is estimated the

probability of error. From there operation time till "failure", which is due to the error

emergence in the program, will make:

 (8)

Analysis of ���� changes can serve as a basis for the program working-out operation

timing � choice, namely, the testing ends when the value ���� becomes large enough.

In case when it is possible to estimate material losses via occurrence of errors in

the calculations, then the operation time testing can be quantified as the following.

If during time of program operation, it fails times, it will cause a total loss

. The process of program testing requires some time-consuming computations

and other costs associated with it. If to mark the cost of a single time testing, then

during time τ such costs will amount . Accordingly, the total loss because of

errors and costs for working testing of programs will be:

 (9)

0ε 0τ)(tf

)1()(
1

)(0

0

0 τ
ττ ετε

−
−==  e

R
dttf

Rn

Rn
0)(

εε =∞)(0 ∞= nRεε 0ε

000)(
τ
τεεετε

−
=−= e

RК
n

)(τε

t∆ δ

)(τε
t t∆

0

0)(

1
)(

τ
τ

δεδτε
τ e

R
T ==

nC

τ
pT

)(τT

Tp

)(τT

T
C p

n

0C

τ0C C

τ
δε

τ
τ

τ
τ

0

0

0
0

)(
Ce

R

TC
C

T

TC
C pnpn +=+=

−

224 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

From there:

or

,

where – time of working out which will provide the minimum .

In this case, when it is required to eliminate an error in the program it is advisable to

use the "backup". Here particular problem is solved by several programs, each of them

is developed by independent teams of programmers and in its basis lays various

algorithms, furthermore, the results of programs computations are compared, and they

are considered true if they match. Since the errors emergence in software is an

improbable event, the occurrence of two or more of such events is practically

impossible.

3. Fault Tolerant Information Systems Software

Fail-safe programs are designed usually by frequent repetition of calculations at the

levels of micro-operations, operations, commands, program modules or the entire

program.

To improve reliability against the failures of the entire information system it is widely

used method of repeated execution of programs at the level of program module. Its

essence is that the program is split into several modules, each of them is executed

twice, and the results are compared. If the results of the first and second calculations

coincide, it is considered that the results obtained are true and then it may to proceed

to the next step of (operational) calculations. At disagreement, the computation is

repeated until the two received results will be the same. The substantial advantage of

this method is its simplicity. At drawing up the program it is required only to provide

the appropriate actions, the method does not require additional costs for hardware.

The disadvantage of this method is in the time for problems solving more than twice

growth, and in inability to detect errors caused by the failures.

Performance of information system at using the method of double execution depends

on the number of modules into which is to be split the program. Indeed, the greater

length of the modules determines also the large probability of failures. So, instead of

two, it will be required to repeat computations three or more times, which will increase

the problem solution time. On the other hand, at small length of modules, most of time

will be spent on comparing and recording the calculations results executed within

individual program modules into the memory devices.

In this regard, there emerges a problem of finding an optimal number of modules into

which a program should be split, namely in such way that the time for problem

solving will be minimal. We introduce the notation: � – time for solving of problem

at a single execution of the program; � – duration of calculation at a single module;

00

0

0 0 =+
−

=
−

Ce
R

NC

d

dC
M

pn τ
τ

τ
δε

τ

δε
τττ

0

00
0 ln

pn
M TC

RC−=

Mτ C

PT

 Some aspects of a software reliability problem 225

���� – the probability of no failure during time �. Then the ratio

� will determine the

number of modules onto which should be divided a program. We can determine the

probabilities of two-, three-, or even �times execution repetition for any program

module. If the failures are independent events, then the probability that a given

program module will be executed twice will be equal to the probability of no failure

at the first and second executions, so that:

����� = ��
���� (10)

Subsequently, the probability ����� at fixed � will be denoted as ��.

Similarly, � is the probability that in one of the two preceding calculations has

occurred failure, but at the third computation was obtained correct result, that is:

�� = 2��
��1 − ��� = 2��

� (11)

where . In general, �� equals to the probability that at the -st and in one

of the preceding calculations the failures were absent, and in the others, already

passed, the failures were presented, that is:

�� = �� − 1���
����� (12)

Thus, the average number of computing will be equal:

� = ∑ ��
�
��� = ∑ ��� − 1��

��� ��
����� (13)

It is easy to show that
�

� !
= �

���"�#. Hence, we have � = �
�

. Thus, the time spent on

calculating will amount
�

�

. Time which is required to conduct comparisons and to

write intermediate calculations into the memory device, depends on the type of

memory storage device used, on the number of intermediate results and on the

number of steps of the program, that is:

 (14)

where – the average time of comparisons operations and of the recourse to

the memory device for one module of program results recording. If we assume that

 then:

�� = �

� ��� +
%

� = � & �
� � + '

�((15)

For some types of information systems it was experimentally found that:

 (16)

where – the intensity of failures. In this case, accepts the minimum value for

, which can be determined from the equation:

pq −= 1 і

3T

k

t

T








=
t

T
kf

t

T
T ,3










t

T
kf ,

aconst
t

T
kf ==








,

() tetp ⋅−= λ

λ PT t

226 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

 (17)

Thus, the value of can determine the optimal length of the program section and

corresponding to it number of stations at which will be minimal.

The cause of incorrect functioning of the information system may be also a presence

in its so-called virus software programs designed to insert undue distortions into

computations, deleting files and creating conditions for the abnormal functioning of

information system.

In accordance to The Codifier of Information System Crimes of the General

Secretariat of Interpol, viruses are classified to QD – the data information systems

changes, within which they are classified as following:

- QDL – logic bomb,

- QDT – trojan horse,

- QDV – virus of information system,

- QDW – worm of information system,

- QDZ – other’s data changes.

Logic bomb – secretly inserts into a program a set of commands that should work only

once but starting at definite circumstances.

Trojan horse – provides an introduction into someone else's program of such

commands, that allow conducting some foreign, not planned by the proprietor of

program operations, while at the same time they preserve the general performance of

the host program liability.

Virus software in information system – a specially written programs that can

"attribute" themselves to other programs (that is to "infect" them), to reproduce and

give birth to new viruses to conduct various undesirable actions in the information

system.

Worm software in information system – special self-distributing software that makes

editing data or programs of information system, without legal right, by transfer,

introduction or spread through a network of information systems.

The share of errors or lockups of information system caused by viruses is about 10%

to 30%. There are known more than 10,000 viruses and about 100 antivirus programs

designed to combat them. There exist viruses (self-instructed, polymorphic, macro

viruses etc.) that can counteract the antiviral programs. One of such virus varieties

implements "settlement" in the anti-viral program. Usually an antivirus program gives

a signal of its infection if such event took place. Time required to cure a virus is on

average from 15 to 30 minutes. The most dangerous virus is a virus that settles in the

executive file. Most viruses “are working" apparently correctly and do not cause

information system deadlocks. But among them are also those which completely erase

the hard disk system areas or subdirectories of information files. In 90% of cases the

viruses penetrate information systems through the network. Normally local networks

themselves do not distribute viruses. But users who work with memory devices which

are damaged with viruses deliver to such network a lot of trouble.

The symptoms of information system infection with a virus are:

- increase of number of errors and lockups of information system,

- slow down the programs loading,

02
2

=−= ⋅

t

a
e

dt

dT tP λλ

PT

t

T
PT

 Some aspects of a software reliability problem 227

- problems (various slowdown and errors) with printer operation,

- drive lights flashing when it does not have to read/write,

- resizing the volume of executable programs, reducing the major available memory.

The volume shortest are destroying viruses; their size does not exceed 20 kilobytes.

Most viruses have volumes up to 100 kilobytes or more. Recently a lot of trouble to

the users deliver macro viruses.

Quality of antiviral program is defined according the following characteristics listed

in descending order of importance:

- reliability and ease of operation (no technical problems, does not require a user’s

special training),

- number of all type viruses finding, an ability to scan the documents/spreadsheets

files, packed files and an ability of contaminated objects curing,

- speed of operation and a variety of another practical features.

If a user has several effective antiviral programs and utilizes it, the most reliable

protection against viruses is in its prevention as:

- creating of regular backups (for example, once a week – complete, every day –

partial copy); the presence of uninfected copies allows rewriting a "sick" file, the

presence of infected but not damaged copies will allow to restore files after the virus

removal;

- making backup copies of installation memory media before the installing of new

software (if they are installed on the infected program the information system output

memory media can get be infected during installation);

- e-mail files that are sent or received check-up on viruses;

- using write-protected memory media when copying files to own hard drive; this will

prevent the infecting of memory media and subsequent infection of other information

systems;

- verification the memory media before files from it loading;

- permanent usage of the resident part of antiviral program which monitors all

suspicious action during operation of information system.

4. Estimation of Software Reliability According the Results Of Adjusting

and Normal Operation

In the processes of software debugging, normal and research operation, it becomes

achievable to use statistical data about the detected and corrected errors in order to

refine the system design reliability assessments. For this purpose, we assume to use

reliability models [6-9] containing parameters, point estimations of which are

obtained at the software commissioning and operation results processing. These

models differ in their assumptions about the dependence of the intensity of errors

emerging during the time of adjustment and operation. Some of those models contain

specific requirements for the software modules internal structures.

4.1. Schumann’s exponential model

This model is based on the following assumptions:

- the total number of commands in the program of machine language is invariable,

228 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

- at the beginning of tests, the number of errors is equal to some constant value, at

length of corrections, the number of errors becomes smaller, and at course of program

correcting new mistakes are not made,

- program failure rate is proportional to the number of remaining errors.

Regarding the structure of the program module there made the following assumptions:

- module contains only one cycle operator in which are resided operators for

information input, assignment operators and operators of controls in advance

conditional transfer,

- nested loops are absent, but there can be present parallel paths, if we have the

) − 1 controls conditional transfer operator.

At these assumptions met, the probability of faultless operation is given by the

formula:

*��, �� = ,-�� − .�/����� = ,��/
,

,

(18)

where:

 – number of errors at the beginning of adjustment,

 – the number of machine instructions in the module,

 , – number of corrected and left errors per one command,

 – mean time between failures,

 – time of adjustment,

 – coefficient of proportionality.

To assess the and there are used the results of adjustments. Assume that

among the total number of the system test programs runs the 1 is number of successful

runs, while 2 − 1 – the number of runs that were interrupted by errors. Then the total

time of 2 runs, intensity of errors and operating time per an error can be found by:

, , (19)

If and , we may find:

, , , (20)

where and – test time for one error. Substituting here (18) and solving the system

of equations, we obtain parameters for the model estimations:

k

() ()τετε Br I

E −= 0

() 














 −
=

τε BI

E
Ñ

T
0

1

0
E

I
()τε B ()τε r

T
τ
C

0
E C


−

==
+=

rn

i
i

r

i
i tTH

11 H

rn −=λ
rn

H
T

−
==

λ
1

1
τ=H

2
τ=H

1

11

1
ˆ

H

rn −=λ
2

22

2
ˆ

H

rn −=λ
1

1 ˆ

1ˆ
λ

=T
2

2 ˆ

1ˆ
λ

=T

1
T̂

2
T̂

 Some aspects of a software reliability problem 229

,

, (21)

To compute the estimations we need, according the results of the adjustment, to learn

the parameters , , and .

Some generalization of results (19) – (21) look as following. Let and are

times of system operation that correspond the adjustment time and ; and

– number of errors detected in the periods and . Then

,

.

Hence:

,

, (22)

If and – solely the total time of adjustment, then , , and

formula (22) coincides with (21).

If during the adjustment course it is made tests at intervals ,

 where , then to determine the maximum

likelihood estimation is used equation:

() ()()
210

1
ˆ τετγε

γ BB

I
E −

−
=

()























−

=

1

0

1

ˆ
ˆ

1ˆ

τε BI

E
T

C

2

1

ˆ

ˆ

T

T=γ

1
T̂

2
T̂ ()

1
τε B ()

2
τε B

1
T

2
T

1
τ

2
τ

1
n

2
n

1
τ

2
τ

() 














 −
=

1

01

1
1

τε BI

E
C

n

T

() 














 −
=

2

02

2
1

τε B
I

E
C

n

T

() ()()
210

1
ˆ τετγε

γ BB

I
E −

−
=

()








−

=

1

0

1

1

ˆ
ˆ

τε BI

E
T

n

C

2

2

1

1

n

T

n

T=γ

1
T

2
T

111
ˆ nTT =

222
ˆ nTT =

k ()
1

,0 τ
() ()kττ ,0,...,0

2 kτττ <<< ...
21

230 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

,

(23)

where:

 23 – the number of runs of -st test that ended with failures,

43 – time which spent on the execution of successful and unsuccessful runs of the 5

test.

At the (23) reduces to the previous case and its solution gives the result (22).

Asymptotic values of the estimations variance (for large values) are determined

according the expressions

,

,

where , .

The estimations correlation coefficient:

.

Asymptotic value of variance and correlation coefficient are used in order to

determine the confidence intervals of values and based on the Gaussian

distribution.

Quite several studies indicate that the most appropriate for Schumann model is an

exponential model of number of errors changing, along the adjustment time length

changing:

,

where 67 and �7 are determined empirically. Then:

*��, �� = ,-�8−.67/9,�:/:;�<.

Mean time to failure increases exponentially with installation duration time

increasing:

.

() j

k

j
jBj H

I

E
nC 

=










−=

1

0
ˆ

ˆ τε

() 
== 





















−=

k

j
j

k

j
jBj H

I

E
nC

11

0
ˆ

ˆ τε

j

2=k

jn

()





























 −






−= 
===

k

j
jBj

k

j
j

k

j
j

I

E
nHCnC

1

2

0

2

1

2

1

1ˆ τεD

()



















−















 −= 
===

k

j
j

k

j
j

k

j
jBj nHC

I

E
nE

1

2

1

2

1

2

0

0
1 τεD

CC ˆ≅
00

ÊE ≅

() () ()
5,0

1

2

0

1

0

1
0

ˆ,ˆ






























 −















 −≅ 
===

k

j
jBj

k

j
jjB

k

j
j I

E
nn

I

E
nEC τετερ

0
E C

() 




 −=

−
00 1

τ
τ

τε e
I

E
B

0

0

τ
τ

eCEIT =

 Some aspects of a software reliability problem 231

4.2. Jelinsky-Morandi exponential model

This model is a particular case of Schumann model. According to this model, the

errors emerging intensity is proportional to the number of residual errors:

,

where:

 – coefficient of proportionality,

 – interval between the � and �� − 1� errors.

Reliability of failure proof operation then is:

*��� = ,-�� −
�	��� = ,-�� − =>?�67 − � + 1��, (24)

At and formula (24) coincides with (18). In order to

obtain maximally likelihood estimation for the parameters and at sequential

observation of errors in the time moments , we need to solve the system

of equations:

, (25)

, ,

Asymptotic estimations of variance and correlation coefficient (at large)) are

determined using the formulas:

, ,

, .

In order to obtain numerical values of these variables the and must be

replaced throughout with their estimations.

4.3. Weibull’s exponential model

Model is given by a set of relations:

, *��� = ,��@��A, .

The advantage of this model is that it contains an additional, in comparison with the

exponential model, parameter B. Selecting the values of two parameters: the B –

shape parameter and
 – scale parameter, one can get more precise correspondence

with the experimental data. The values B are selected from a range of 0 < B < 1.

() ()1
0

+−=∆ iEKt JMiλ

JMK

it∆

ii ttt <<−1

ICK JM = () () IiB 1−=τε
0

E JMK

k
kttt ,...,,

21

() ()
=

−
+−=+−

k

i

iEkiE
1

0

1

0
1ˆ1ˆ ()1ˆ

0
+⋅−= kE

A

k
K JM θ

()1ˆ
0

+⋅−= kE
A

k
K JM θ 

=
=

k

i
itA

1


=

=
k

i
iitB

1

22

2

0
ˆ

CAkS

k
E

−
≅D

22

2

2

2ˆ

JM

JM
JM KAkS

KS
K

−
≅D

() () 5,0

2

0
ˆ,ˆ

kS

AK
EK JM

JM ≅ρ ()
=

+−=
k

i

iES
1

02
1

0
E JMK

() 1−= mm tmt λλ 






 +Γ=
m

T
1

1
1

λ

232 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

Parameter estimations are obtained by using the method of moments. For the shape

parameter m, the values are found from the solution of equation:

, , ,

where – gamma function.

For the scale parameter
, its rating is determined according the formula

.

4.4. Structural model by Nelson

For the reliability index is taken probability *�2� of failsafe executions of program

runs. For run, the probabilities of failure are as following:

,

where:

 – an indicator of failure at � set of data,

 – the probability of � set at the 5 run.

Therefore:

*�2� = ∏ �1 − F3� = ,-�8∑ G2� 1 − F3�H
3�� <H

3�� .

If the – time of j run, the failure rate is then:

,

*�2� = ,-�8∑
��3�	�3
H
3�� <, (26)

Practical use of formula (26) is complicated as a result of a plurality of inputs and

many hardly estimated model parameters. In practice, software reliability is assessed

according the results of test trials which cover relatively small region of initial data

area.

For a simplified estimation is proposed formula:

*�I� = �
J ∑ 6��2��K�

J
��� ,

,

2

2

2 1
1

2
1

t

s

mm
=






 +Γ






 +Γ 
=

=
k

i
it

k
t

1

1 ()
=

−=
k

i
i tt

k
s

1

22 1

()xΓ

t
m







 +Γ=
ˆ

1
1λ̂

n
j


=

=
N

i
ijij ypQ

1

iy

jip

jt∆

() ()
j

j

j t

Q
t

∆
−−

=
1ln

λ


=

=
j

i
ij tt

1

NW
N

i
i =

=1

 Some aspects of a software reliability problem 233

where – number of runs,

 – number of errors at i run,

 – indicator of absence of errors at i run.

To reduce the problem dimension, the multitudes of input sets are split into disjointed

subsets L3, to each of which corresponds a certain path M3 , 5 = 1. . 2. If M3 has errors,

then at the test performance along the subset. L3 will emerge a refusal. Subsequently

the probability of correct performing of single test is

*�1� = 1 − ∑ �3�3
H
3�� ,

, .

At this approach, to find an assessment of reliability using the structural model is

difficult, since the error in M3 appears not at every set from the L3, but only at some of

them. In addition, there is no method for the �3 estimation based on the results of

programs testing.

It should be noted, that for this model, at present, has not yet been found a sufficiently

reasoned justification for its implementation.

5. Conclusions

Thus, in article we were analyzed in detail some methods for assessing software

reliability. Many approaches have been proposed to ensure the reliability of programs,

including organizational development methods, various technologies, and

technological software tools, which obviously require significant resources. However,

the absence of universally accepted criteria for reliability does not allow us to answer

the question of how much more reliable the software becomes in compliance with the

proposed procedures and technologies and to what extent the costs are justified. Thus,

the priority of the task of assessing reliability should be higher than the priority of the

task of ensuring it, which is not observed.

The issue of ensuring the reliability of programs is considered more important than

the question of its evaluation. The situation looks paradoxical: it is obvious that before

improving some characteristic, one should learn to measure it, and at least it is

necessary to have a unit of measure. The main reason for this situation is rooted in the

fact that the source of unreliability of the programs is the errors contained in them,

and if there are no errors, then the program is reliable. Essentially, all measures to

ensure the reliability of programs are aimed at minimizing (if not eliminating at all)

errors in development and at the earliest possible time to identify and eliminate them

after the program is made. It should be noted that error-free programs, of course, exist,

but modern software systems are too large and almost inevitably contain errors.

Although this circumstance has been noted by many authors and is known to any

practical programmer, there seems to be a psychological barrier that does not allow

recognizing the fact of errors in software as an unavoidable reality: since there is no

exact criterion for determining the maximum size of an error-free program, there is

always hope that in this particular software system they are gone.

N

in

iE


∈

=
jGi

ijj pp 1<jε

234 A. PETROV, O. VESELSKA, E. POPOVA, O. PETROV, R. ZIUBINA

The problem of choosing the unit of measurement of the reliability of a computer

program cannot be solved within the framework of the industrial approach, which

currently occupies an increasingly dominant position in programming.

Despite the obvious relevance, the issue of evaluating the reliability of software does

not attract proper attention. At the same time, even a superficial analysis of the

problem from a probability-theoretical point of view allows us to identify some

patterns in this paper.

REFERENCES

1. MYERS G. J.: Software reliability: Principles and practices. Wiley, New York

1976.

2. SHAGIEVA R.A., NIKITENKO V.: The problem of software reliability. Bulletin

of InEU, 2. 93-96 (2011).

3. THAYRE T., LIPOV M., NELSON E.: Software Reliability. Wiley, New York

1981.

4. ZELJIKOVIC V., RADOVANOVIC N., ILIC D.: Software Reliability: Models

and Parameters Estimation. Scientific Technical Review, 61(2011), 57-60.

5. MAREK A., PETROV A., PETROV A.: Methods and models of reliable software

protection systems. Autobusy: technika, eksploatacja, systemy transportowe.

17(2016)6, 37-46.

6. WASON R., AHMED P., RAFIQ M. Q.: New Paradigm for Software Reliability

Estimation. International Journal of Computer Applications, 44(2012)14, 39-44.

7. IQBAL M., MONTES De OCA M.A.: An Estimation of Distribution Particle

Swarm Optimization Algorithm. In: Dorigo, M., Gambardella, L. M., Birattari,

M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006, LNCS, vol. 4150, pp.

72-83. Springer, Heidelberg 2006.

8. JIANG R.: Required Characteristics for Software Reliability Growth Models. In:

WCSE '09: Proceedings of the 2009 WRI World Congress on Software

Engineering, 4(2009), 228–232. IEEE, Xiamen, China.

9. ZEEPHONGSEKUL P., XIA G., KUMAR S.: Software-reliability growth model:

primary-failures generate secondary-faults under imperfect debugging. IEEE

Transactions on Reliability, 43(1994)3, 408-413.

