
 

Izabela KUTSCHENREITER-PRASZKIEWICZ1 

WYZNACZANIE CZASU MONTAŻU NA ETAPIE 

PROJEKTOWANIA WYROBU 

Streszczenie: Czas montażu może być podstawą do porównywania różnych wariantów wyrobu 
oraz procesu produkcyjnego. W artykule czas montażu został wyznaczany na podstawie 
charakterystyki uwzględniającej cechy wyrobu oraz typowych narzędzi i wyposażenia  
z wykorzystaniem sztucznej sieci neuronowej (ANN). Analizowane cechy obejmują m.in. 
informacje określone podczas projektowania wyrobu takie jak: struktura wyrobu, 
charakterystyka części (np. ciężar, rozmiar) i rodzaj połączenia, a także informacje określone 
podczas planowania montażu, takie jak narzędzia (np. śrubokręt ręczny, śrubokręt elektryczny, 
szczypce), wyposażenie (np. prasa, podgrzewacz) oraz układ stanowiska pracy (np. odległości, 
sposób dostarczania). Do charakterystyki montażu zastosowano schemat obiekt-atrybut-
wartość (OAV). Przedstawiono przykład zastosowania ANN do predykcji czasu montażu 
podzespołów mechanicznych takich jak montaż łożyska. Przedstawione podejście jest 
szczególnie istotne dla przedsiębiorstw oferujących produkty dostosowane do potrzeb klienta. 
 
Słowa kluczowe: wytwarzanie, norma czasu, montaż, grafy, sztuczna sieć neuronowa  

STANDARD ASSEMBLY TIME SETTING IN AN EARLY STAGE OF 

PRODUCT DEVELOPMENT 

Summary: The standard assembly time is an important value in product development, applied 
to compare different product or manufacturing variants. In the article, the standard time is 
created using an artificial neural network (ANN) for standard manual and machine-manual 
operations, and taking into consideration product characteristics and typical tools, equipment 
and layouts. The analysed features include, among other things, information determined during 
product development, product structure, part characteristics (e.g. weight, size) and connection 
type, as well as the information determined during assembly planning, such as tools (e.g. hand 
screwdriver, power screwdriver, pliers), equipment (e.g. press, heater) and workstation layout 
(e.g. distances, feeding method). The object-attribute-value (OAV) framework was applied for 
the assembly characteristic. An example of the ANN application to predict standard assembly 
time was presented for a mechanical subassembly. The case study was dedicated to ANN-based 
standard time modelling for a bearing assembly. The presented approach is particularly 
important for enterprises that offer customized products. 
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1. Introduction  

The important trends in manufacturing are mass customization and product 
personalization, which come from the market pressure to introduce product 
innovations with a competitive pricing strategy (Pine, 1993; Mateus, Claeys, Lim`ere, 
Cottyn,·Aghezzaf, 2019). The mass customization paradigm is focused on providing 
customized products at near mass production cost (Pine, 1993; Hu, Ko, Weyand, 
ElMaraghy, Lien, Koren, Bley, Chryssolouris, Nasr, Shpitalni, 2011). A customized 
product is designed according to the product family architecture, where the customer 
can choose among given product modules. The modules in customized products have 
standard mechanical, electrical and informational interfaces to allow for their easy 
assembly and disassembly. The concept of personalized products enabled the 
involvement of customer design in the product architecture. A personalized product 
has an open architecture and consists of three types of modules: common modules 
that are shared across the product platform; customized modules that allow customers 
to choose, mix and match; and personalized modules that allow customers to create 
and design (Hu, Ko, Weyand, ElMaraghy, Lien, Koren, Bley, Chryssolouris, Nasr, 
Shpitalni, 2011). Due to the increasing number of product variants in both concepts, 
assembly is an important stage in the manufacturing process for products that consist 
of several components (Hu, Ko, Weyand, ElMaraghy, Lien, Koren, Bley, 
Chryssolouris, Nasr, Shpitalni, 2011; Lien, 2018; Zha, Lim, Fok, 1998).  
The decision-making issues related to the assembly process in production planning 
were discussed by Ho and Ji (2007) and included setup management (assigning 
products to assembly lines, grouping placement machines, grouping parts into 
families, sequencing the production) and process optimization (allocating component 
types to placement machines, determining the sequence of component placements, 
assigning component types to feeders at each machine). In product and production 
planning, the standard assembly time is an indicator that helps assess a given solution.  
Most assembly operations are carried out manually. In manual assembly, the standard 
time of an operation is determined by manual effort, even if some sub-operations are 
performed by machines, like electric screwdrivers or similar devices (Lien, 2018). 
Many assembly systems combine some automatic operations with manual work, e.g. 
robots can serve as tools for lifting, moving, and positioning heavy objects while the 
operator deals with the more delicate tasks that require human dexterity and fingertip 
feeling (Lien, 2018). Assembly tasks can be precisely planned and the standard time, 
which is understood as the time required by an average skilled operator, working at a 
normal pace, to perform a specified task using a prescribed method (Zandin, 2001), is 
the measure of their optimality.  
In the time measurement method, the standard time is the product of the following 
factors (Aft, 2000; Niebel, Freivalds, 2008) observed time (the time to complete the 
task is measured) and performance rating factor (the pace the person is working at. 
70–95% is working slower than normal, 105–120% is working faster than normal, 
100% is normal and paces lower than 70 and higher than 120% are out of scope for 
the analysis. This factor is estimated by an experienced worker who is trained to 
observe and determine the rating).  
Predetermined Time and Motion Study (PMTS) methods are typically used to 
estimate the standard times of operations before their execution (Cohen, Singer, 
Golan, Goren-Bar, 2013). 
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Subjective estimates of times are focused on time setting with an experienced worker. 
Research by Chan and Hoffmann (2013; 2016) showed that people can estimate task 
times with reasonable accuracy (Cohen, Singer, Golan, Goren-Bar, 2013).  
There is a gap in time standard setting methodology. Methods used so far depend on 
human experience, so it is necessary to support this field of data analysis using 
intelligent methods, such as artificial neural networks (ANN), which can be used 
regardless of the experienced worker.  
Standard time is an important characteristic of a manufacturing system. It can be 
defined as a combination of humans, machinery, and equipment that are bound by a 
common material and information flow (Caggiano, 2014). Based on this definition, 
factors affecting time standards in assembly processes were determined.  
The standard time depends on the product and manufacturing characteristics and 
comes from different sources. Methods useful in product and manufacturing data 
determination were discussed by Molloy et al. (Molloy, Warman, Tilley, 1998) who 
used Quality Function Deployment (QFD) to support the determination of data from 
customer requirements, used CAD for the product data characteristics, and applied 
Failure Mode and Effect Analysis (FMEA) to support the product and manufacturing 
quality. Eigner et al. (Eigner, Ernst, Roubanov, Deuse, Schallow, Erohin, 2013) 
created a model in which the process planning know-how is described using product 
assembly information classified into the following categories: information to be saved 
and automatically detected in CAD, information to be selected during product 
development and information to be added during assembly planning.  
The proposed approach is focused on creating standard time for standard manual and 
machine-manual operations, taking into consideration product characteristics and 
typical tools, equipment and layout. 
The analysed features include: 

- Information determined during product development (e.g. from CAD 
software) 

- product structure and part characteristics (e.g. weight, size)   
- connection type 

- Information determined during assembly planning 
- Tools (e.g. hand screwdriver, power screwdriver, pliers) 
- Equipment (e.g. press, heater) 
- Workstation layout (e.g. distances, feeding method) 

 
Collecting data is focused on standard time setting with correlation to the factors 
affecting it. The factors can be analysed according to the object-attribute-value (OAV) 
framework, in which the object is understood as an entity being described, an attribute 
is a feature characterizing a given object, and value is the measure of a given attribute. 
The assembly process analysis can use factors affecting the standard time, which are 
presented in Fig. 1 (see Kutschenreiter-Praszkiewicz, 2020).  
 
There is a gap in the standard assembly time setting methods useful in an early stage 
of product development. This paper aims to provide an approach for the standard 
assembly time setting, which extracts information from a CAD product model and 
standard assembly workstation characteristics. The standard product assembly 
sequences, fixtures and constraints are defined.  
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Figure 1. Factors affecting the standard time of an assembly process 

2. Proposed approach  

The proposed approach is focused on a standard assembly time setting method that is 
fast, precise, and adequate for a given group of products. The approach consists of 
four main blocks, as presented in Fig. 2. The first block is focused on extracting 
information from a CAD product model, such as dimensions, weight, shape, etc. The 
second block addresses decomposition of the assembly operation and defines tasks 
that allow successful assembly of the product. The third block addresses the assembly 
workstation characteristics, which include workstation layout and fixtures ordered 
according to the ergonomic requirements. The fourth block combines the information 
fixed in the previous blocks with the standard assembly time, which comes from, e.g., 
a time study or predetermined motion time system. This block is focused on the 
development of training, testing and verification sets and creates the ANN structure, 
which transforms the data from blocks 1 through 3 into the standard time.  

2.1. Information extraction from a CAD product model 

The product model is developed by managing the product structure and specifying the 
product geometric information (Demoly, Yan, Eynard, Rivest, Gomes, 2011). From 
the standard assembly time point of view, the product part dimensions, their weight 
and the part assembly sequence are crucial issues.  
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Figure 2. Standard assembly time setting in the early stage of product development 

for a mechanical product 

Mane et al. (Mane, Jonnalagedda, Dabade, 2019) combined product features, such as 
weight, volume and length, from the CAD model with the part name and connection 
type between two elements.  
The connecting elements are crucial data affecting the standard time of the assembly 
and disassembly process. A connecting element can be classified into the following 
categories (Eigner, Ernst, Roubanov, Deuse, Schallow, Erohin, 2013; Albers, Sauer, 
Steinhilper, 2008): 

- Detachable (without destruction of the connecting elements): screw, pin, 
bolt, cone connection, press connection, profile, 

- Detachable (with destruction of the connecting elements): rivets, clip 
connection, 

- Non-detachable: soldering, sticking, welding. 
The assembly sequence information extraction method from a CAD product model 
can be based on the graph described by Trigui et al. (Trigui, Ben Hadj, Aifaoui, 2015), 
Belhadj et al. (Belhadj, Trigui, Benamara, 2016), Hadj et al. (Hadj, Belhadj, Gouta, 
Trigui, Aifaoui, Hammadi, 2017), Mateus et al. (Mateus, Claeys, Lim`ere, 
Cottyn,·Aghezzaf, 2019) and Mane et al. (Mane, Jonnalagedda, Dabade, 2019) or 
from a simulation in virtual reality (VR), as described by Hongmin et al. (Hongmin, 
Dianliang, Xiumin, 2010), Xiong et al. (Xiong, Wang, Huang, Xu, 2016), Zaeh et al. 
(Zaeh, Wiesbeck, Stork, Schubo, 2009), and Gao et al. (Gao, Shao, Liu, 2016). 
According to the graph method, a liaison graph was applied for determining assembly 
sequences and subassembly identification. According to Swain et al. (Swain, Sen, 
Gurumoorthy, 2014), the liaison graph is defined as a set of geometric entities on the 
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parts being assembled and relationships between these geometric entities. The liaison 
graph is a graphical network where nodes represent parts and lines between nodes and 
edges represent certain user-defined relationships between parts, physical contact or 
connections between components (Whitney, 2004; Hu, Ko, Weyand, ElMaraghy, 
Lien, Koren, Bley, Chryssolouris, Nasr, Shpitalni, 2011). An example of the liaison 
graph built for a subassembly (Fig. 3, Fig. 4) is presented in Fig. 5.  

 
Figure 3. Subassembly  

 
 

 
 

 
Figure 4. Subassembly components  

 
 
 
 
 
 
 
 

Figure 5. An example liaison graph  
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Liaisons have been used in manufacturing planning research as a means to capture the 
mating relationship between parts in an assembly. Various types of liaisons were 
analysed by Swain et al. (Swain, Sen, Gurumoorthy, 2014). The geometric entities 
associated with the liaison on each part could be either edges, faces or features of that 
part. 
According to Swain et al. (Swain, Sen, Gurumoorthy, 2014), various types of liaisons 
include lap, butt, T, corner and edge joints, which can be assembled using welding or 
glutting, and lap joints with holes through both plates, which can be assembled with 
the use of riveting or bolt fastening. The schematic diagram of associativity between 
the product and production process models was presented by Swain et al. (Swain, Sen, 
Gurumoorthy, 2014).  
Based on the liaison graph or liaison matrix, which was derived from a liaison graph 
or connections, it is possible to develop different product assembly variants. Methods 
used to find the best assembly sequence were discussed by Ghandi and Masehian 
(2015), Jiménez (2013) and Fanga et al. (Fanga, Onga, Neea, 2014).  
An augmented version of the liaison graph, such as DFC (Datum Flow Chain), was 
developed by Mantripragada and Whitney (1998) who added information about the 
type of contact between parts (defined by their geometry), the type of connection 
associated with given contacts (glue, screw, pressure fit, etc.), and attributes of all the 
parameters in the assembly.  
A single assembly sequence can be represented by an assembly tree, whose nodes 
represent partial assemblies occurring during the assembly process, the root node is 
the final assembly, and the leaves are the single parts (Jiménez, 2013). 
Product features and types of mating conditions between different parts of the 
assembly were analysed using the liaison graph by Mane et al. (Mane, Jonnalagedda, 
Dabade, 2019). 

2.2. Assembly process planning  

Process planning maps the world of design ideas to production reality (Mantripragada, 
Whitney, 1998). The issue of assembly process planning was discussed by Kardos et 
al. (Kardos, Kova, Vancza, 2017), who defined assembly sub-problems, such as 
technology, fixturing, tooling, collision detection, part stability, quality, ergonomics, 
etc., and proposed the rule-based approach to finding a proper assembly technology.  
In the proposed framework, the following constraints should be taken into 
consideration: 

- Types of connections, including typical solutions, e.g. screwing, pressing, 
sticking. 

- The assembly process can be analysed with movements such as: 
- Picking up a component. 
- Connecting two components.  
- Putting down a component.  

- Fastening tools include, among others: 
- Hand fastening tools (manually operated assembly tools): hand 

wrenches, hammers, pliers, a woodruff key, an Allan key, screwdrivers, 
- Power fastening tools (electrically powered, air-driven): power drills, 

electric screwdrivers, electric nut runners. 
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Tools and fixtures can be included in the extended liaison graph (ELG) described by 
Kardos et al. (Kardos, Kova, Vancza, 2017), where tool-to-part and fixture-to-part 
contacts are represented as edges. An example is presented in Fig. 6.   
 
 
 
 
 
 
 
 

Figure 6. An example of an extended liaison graph (ELG) 

Another approach was presented by Mane et al. (Mane, Jonnalagedda, Dabade, 2019) 
who use CAD data that was automatically extracted and converted into useful 
knowledge (matrices and configurations). They showed that the Hierarchical Directed 
Graph (HDG) can be effectively used for activities like assembly sequence planning 
and can be further enriched with some more information, like required tools, jigs, 
fixtures, handling equipment, assembly time and cost of each part.  

The assembly process can be analysed using the following activity: 
- Picking up a component, which depends, for example, on the variables 

presented in Fig. 7.  
- Assembly – connection of two components.   
- Putting down a component.  

The time standard for the “picking-up” activity was calculated as the collective 
time of reaching, grasping and moving using the MTM (Method Time Measurement) 
method. The attributes that characterise the “picking-up” activity were related to the 
workpiece characteristics, as well as workstation characteristics. Data pre-processing 
was discussed by Kutschenreiter-Praszkiewicz (see Kutschenreiter-Praszkiewicz 
2018).   

2.3. Assembly workstation characteristics  

The following assumption of workstation characteristics should be taken into 
consideration during assembly planning (Lien, 2018; Shinde, Jadhav; 2012): 

- Product parts should be suitable for grasping and holding. 
- Workstation layout should provide small distances for material handling. 
- If necessary, assistance for heavy material handling should be available.  
- Eye and body movements and stressed body postures should be reduced. 
- Fixtures and tools should be easy to use.  

 
The detailed characteristics of the assembly process of two parts (Fig. 7) are presented 
in Fig. 8 (see Kutschenreiter-Praszkiewicz, 2020).  
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Figure 7. Subassembly in ELG 

 

Figure 8. Factors (attributes) affecting standard assembly time of two components 

The number of variables affecting the time standard is quite large, so it is necessary 
to use methods that can analyse such a complex process. ANN can be used in this 
field.  

2.4. Standard time setting using ANN 

ANN is a promising prediction tool (see Kuo Y, Lin K-P(2010)). ANN is composed 
of interconnected adaptive elements called neurons, which can respond to a given 
stimulus like the human brain. ANN is an interconnected group of artificial neurons 
that have the property of storing knowledge and making it available for use (Renuga 
Devi, Arulmozhivarman, Venkatesh, Agarwal, 2016). Studies on machine learning 
have mainly been concerned with automatic learning on examples, which allows 
developing the knowledge (Wang, 1999; Hayashi, Setino, Azcarraga, 2016; Jiang, 
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Jiang, Xu, Huang, 2017; Liu, Wang, Liu, Zeng, Liu, Alsaadi, 2017). The basic 
elements of ANN are synapses, which are responsible for signal transfer between 
neurons, an adder, which sums all the signals in a neuron, and activation functions, 
which are responsible for the neuron output. By using a learning algorithm and a given 
set of training examples, the weights representing a connection between neurons can 
be modified to minimize the difference between ANN predicted outputs and those that 
are in the training set. Different learning algorithms can be used.  
The most widely studied supervised learning method is the feedforward neural 
network, in which a model is refined during the learning process (Wang,1999). Multi-
layer perceptron (MLP) training, which is a class of feedforward neural network, is 
focused on minimizing the error between the training data set and the corresponding 
MLP network output by finding optimum values for the weights assigned to the neural 
connections (Roy, Koeppen, Ovaska, Furuhashi, Hoffmann, 2002). 
Various researchers have applied many ANN models. Fernandez et al. (Fernandez-
Delgado, Reboreda, Cernadas, Barro, 2010) used MLP and radial basis functions 
(RBF) to predict the performance times of production tasks. Chen et al. (Chen, Wang, 
Tsai, 2009; Chen, 2008; Chen, 2012) proposed a hybrid approach involving a self-
organization map and fuzzy backpropagation network, where the cycle time 
prediction by the processing time and reliability ratio was predicted using a linear 
ANN (Kutschenreiter-Praszkiewicz, 2013).  
This research is focused on predicting standard assembly time future values based on 
the values found using the predetermined motion time system. The predetermined 
motion time system is time-consuming, so it is necessary to apply a more efficient 
approach, such as ANN. The development of an ANN assembly process model can 
be based on the following steps:  

- Development of training, testing, and verification data sets. 
- Finding the best ANN structure to model the assembly process. 

MLP is a well-known artificial neural network used for classification and regression, 
among other things, (Young, Tsai, 1994). A multi-variable regression MLP model of 
a given process is composed of a selected number of input and output neurons and 
neurons in hidden layers. The MLP approach presented in this article involves 
assembly standard time as the network output and work characteristics as the ANN 
input.  
The number of ANN inputs can be established using sensitivity analysis, which 
indicates the error and regression ratio caused by removing a given ANN input.  
The number of neurons in the hidden layer must be large enough to form a decision 
region that is as complex as required by the given issue (Roy, Koeppen, Ovaska, 

Furuhashi, Hoffmann, 2002). A wrong decision related to the ANN model (irrelevant 
inputs, too many hidden layers or neurons, an insufficient amount of training data, 
etc.) can cause ANN overfitting and deteriorate generalization capability (Wang, 
1999).  

2.4.1. Development of training, testing, and verification data sets 

The standard time can be determined using methods such as a time study or 
predetermined motion time system (e.g. MTM, Work-Factor, MOST). A time study 
is focused on time measurement to complete the task and determine the performance 
rating factor. In MTM, the manual operations are broken down into standard 
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movement elements like reach, grasp, move, position, realize, etc. Furthermore, the 
movement distance, weight of the handled object, precision of grasping and 
positioning, and the effect of simultaneous operation of two hands are considered. The 
time required to perform the different handling subtasks is described in tables (Lien, 
2018; Zaeh, Wiesbeck, Stork, Schubo, 2009). Using MTM is time-consuming and a 
time study needs skilled workers to perform the assembly task, so there is a gap in the 
methods for standard time setting. In the presented approach, ANN was proposed for 
the standard assembly time setting. 
Data acquisition is focused on obtaining the training, testing and verification data sets 
(Zhou, Duan, Huang, Cao, 2014; Roy, Koeppen, Ovaska, Furuhashi, Hoffmann, 

2002). AI technologies can include knowledge bases, fuzzy logic and decision trees 
as well as neural networks (Yang, Wu, Zhu, Bao, Wei, 2013; Shiue, Guh, 2006; Priore, 
De La Fuente, Gomez, Puente, 2001). AI application for assembly planning needs 
feature modelling useful in automating the experience-based reasoning. Feature 
(attribute) analysis and conversion is an essential element for AI application. In the 
proposed approach, the assembly process is represented by the OAV scheme, in which 
an object is associated with a set of attributes and each attribute is described by 
appropriate values. The OAV scheme gives a concise data structure for organising the 
features of a selected process (Young, Tsai, 1994).  
Development of a training set applies the OAV framework and assembly analysis. 
The OAV framework uses information to be saved in CAD, such as component type 
and characteristics, and information to be added in assembly planning, like 
workstation layout, tools, and equipment (Table 1). Attributes can be classified as 
constant or variable. Constant attributes can be used for product, tool, and layout 
descriptions, whereas variable attributes can be applied for a given assembly process 
description. Examples of constant attributes are shown in Table 2 and examples of 
variable attributes are presented in Table 3.  
An ANN is established using a set of training samples, including attributes and their 
values. The training examples can be generated by simulations or by a real production 
system.  

2.4.2. Finding the best ANN structure to model the assembly process 

One of the most commonly used neural networks is MLP (Zhang, Gupta, 2000).  
In the MLP structure, neurons are grouped into layers. The first layer is called the 
input layer, the last layer is called the output layer, and the remaining layers are called 
hidden layers. The number of layers and neurons in the MLP structure determines its 
learning capability. ANN should be trained to represent any given issue behaviour. 
During the training process, the weighted connections between neurons are changed 
until, finally, a model of the given issue is created. The ANN structure depends on the 
modelled issue. Too many hidden neurons may lead to overlearning of the neural 
network. Experience can help determine the number of hidden neurons, or the optimal 
size of the network can be obtained through a trial and error process (Lee, An, Tsung, 
2005).  
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Table 1. Two-part product assembly information 

Product assembly information (two components assembly) Information 

source Object Attribute Value 

Components 
characteristics  

Weight  Information 
to be saved in 
CAD  

 
Size  

 
 

Shape   
 
 

Material   
 

Connection type Force needed  
 

Fastener type  
 
 

Workstation layout Distance  Information 
to be added in 
assembly 
planning 

 
 

Way of feeding  
 

Process, tools, equipment Tool  
 
 

Additional 
treatment 

 

 

Table 2. Examples of constant attributes 

Product, tool, layout Constant 

attributes Attribute Value  

Distance for picking up the first 
part  

Small (less than 20 cm)  
Medium (20–80 cm) x 
Large (over 80 cm)  

Distance for picking up the 
second part  

Small (less than 20 cm)  
Medium (20–80 cm) x 
Large (over 80 cm)  

Distance for putting down the 
subassembly  

Small (less than 20 cm)  
Medium (20–80 cm) x 
Large (over 80 cm)  

Material  Flexible, fragile    
Inflexible  x 
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Force needed Low force x 
High force  

Additional treatment No x 
Yes  

Table 3. Examples of variable attributes.  

Product, tool, layout Variable attributes 

Attribute Value   

Diameter  
Min 50 x 
Max 210 x 

Hitting 
Yes x 
No x 

No of bearings heating 
concurrently 

Min 0 x 
Max 6 x 

Tool No x 
Manual x 
Automatic   

3. Implementation – empirical illustration  

The case study was focused on predicting a bearing standard assembly time according 
to the proposed approach and a gully assembly time prediction. The analysed 
subassemblies were presented in ELG liaison graphs in Figs. 9 and 12.  
In the bearing assembly example (Fig. 10), the training set included three inputs, 
bearing internal diameter (BID), the number of bearings heated concurrently (HC) and 
additional treatment (H). The ANN output is the standard assembly time calculated 
using a predetermined motion time system. The best ANN structure was found and a 
comparison of ANN structures is presented in Table 4. The ANN structure for the best 
training results with the lowest number of errors is presented in Fig. 10. The ANN 
response surface is presented in Fig. 11. The ANN output characteristics for the 
chosen network are presented in Table 5 and the training set analysis is presented in 
Table 6.  
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Figure 9. Subassembly analysed using ELG  

Table 4. ANN comparison 

No 
ANN 

type 

Number  

of inputs 

Number 

of 

neurons 

in hidden 

layer 1 

Number 

of 

neurons 

in hidden 

layer 2 

Error in 

the 

training set 

Error in 

the 

verification 

set 

Error in 

the testing 

set 

Performance 

in the 

training set 

1 MLP 4 4 - 26.96598 42.66782 12.18509 0.07146 

2 MLP 3 2 4 16.97517 35.34161 73.71668 0.1573405 

3 MLP 2 3 3 114.735 28.04009 59.5909 0.2056696 

4 MLP 4 8 5 56.22999 26.82816 19.18051 0.03061 

5 MLP 4 4 - 193.9325 22.05249 80.06191 0.8643352 

6 MLP 3 6 - 10.28764 21.96066 36.39989 0.09288 

7 MLP 3 2 4 57.56206 21.49768 34.69016 0.2973801 

8 MLP 3 3 - 104.6278 13.32886 51.16594 0.1858983 

9 MLP 3 2 4 233.7202 11.32592 176.7063 0.9712075 

10 MLP 3 6 - 22.36137 6.722654 13.65985 0.09359 
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Figure 10. ANN structure 

 

 

Figure 11. Response surface  

Table 5. ANN output characteristics  

Predicted ST Training ST Error ST Error [%] 

391.5754 385 6.57536 0.02192 
588.8881 554 34.88813 0.11629 
525.1548 505 20.15485 0.06718 
552.3402 566 -13.65985 0.04553 
727.2773 734 -6.722654 0.02241 
703.2617 685 18.2617 0.06087 

Table 6. ANN training set analysis  

Indicator Tr ST 

Data Mean 532.25 
Standard Data Deviation 124.138 
Error Mean 19.97 
Error Standard Deviation 11.6178 
Abs Error Mean 19.97 
Standard Deviation Ratio 0.09359 
Correlation 0.9968815 
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In the presented approach, a sensitivity analysis was done and the most 
important attributes in the training set were found. The results of the sensitivity 
analysis are presented in Table 7. As a result of the sensitivity analysis, three important 
attributes were established: the first one is the “bearing internal parameter” with the 
training set error of 74.52644 and regression ratio of 3.332821; the second is the 
“heating”, with the training set error of 71.54082 and regression ratio of 3.199304, the 
third is the “number of bearings heated concurrently” with the training set error of 
21.41731 and regression ratio of 0.9577815.  

Table 7. ANN input characteristics - sensitivity analysis 

 ANN Inputs 

 BID HC H 

Rank for the training set 1 3 2 
Error for the training set 74.52644 21.41731 71.54082 
Regression ratio for the training set 3.332821 0.9577815 3.199304 

 
Ten variants of the ANN configuration were compared and the network with the best 
performance was found. A comparison of the tested networks, Table 5, used error and 
performance (regression ratio) as the comparison criteria. Different MLP ANN 
structures were compared with different numbers of neurons in layers. The best 
network had 6 neurons in the hidden layer, three neurons in the input layer, and one 
in the output layer. The best network, Fig. 10, had a very good performance 
(regression ratio is 0.09359, correlation is 0.9968815). The root mean square (RMS) 
error was 19.97 for the training set. The data mean values number was 532.25 for the 
training set.  
In the gully assembly example, Fig. 13, the training set was created with the use of 
MTM method. 
 
 
 
 

 
 
 
 

Figure 12. Subassembly analysed using ELG  

The inputs of the neural network included attributes:  
- Number of gullies.  
- Weight of subassembly. 

The output of NN is the time standard.  
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The best ANN structure was found and a comparison of chosen ANN structures is 
presented in Table 8. The ANN output characteristics for the chosen network is 
presented in Table 9 and the training set analysis is presented in Table 10.  

Table 8. ANN comparison 

No 
ANN 

type 

Number  

of 

inputs 

Number 

of 

neurons 

in 

hidden 

layer 1 

Number 

of 

neurons 

in hidden 

layer 2 

Error 

in the 

training 

set 

Error in 

the 

verificatio

n set 

Error 

in  

the 

testing 

set 

Performa

nce in the 

training  

set 

1 RBF 1 2 0 3 6.5 9.2 0.06 
2 RBF 1 1 0 0.4 35.7 51.5 0.02 
3 RBF 1 1 0 8.4 17.9 22.9 0.18 
4 MLP 1 1 0 0.4 11.3 15.1 0.02 
5 MLP 1 2 0 5.5 7.1 8 0.04 
6 MLP 1 7 0 4.8 5.3 4.5 0.03 
7 MLP 1 11 0 3.7 5.1 5.7 0.04 
8 MLP 2 7 0 5.8 4.9 3.2 0.05 
9 Linear 2 0 0 0.3 0.8 0.2 0.01 
10 Linear 1 0 0 0.4 0.2 0.6 0.02 

Table 9. ANN output characteristics  

Predicted ST Training ST Error ST Error [%] 

38.3 39 -0.66 0.019 
38.3 38 0.33 0.009 
38.3 38 0.33 0.009 
72 72 0 0 
72 72 0 0 

105.6 105 0.66 0.019 
105.6 106 -0.33 0.009 

Table 10. ANN training set analysis  

Indicator Tr ST 

Data Mean 46.75 
Standard Data Deviation 16.83 
Error Mean 1.77 
Error Standard Deviation 0.47 
Abs Error Mean 0.33 
Standard Deviation Ratio 0.02 
Correlation 0.99 

 
Ten variants of the ANN configuration were compared and the network with the best 
performance was found. A comparison of the tested networks, Table 10, used error 
and performance (regression ratio) as the comparison criteria. Different ANN 
structures were compared with different numbers of neurons in layers. The best 
network had a very good performance (regression ratio is 0.02, correlation is 0.99). 
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The root mean square (RMS) error was 1.77 for the training set. The data mean values 
number was 46.75 for the training set.  

4. Results and discussion  

The present study concerned developing an approach for predicting standard assembly 
time. The proposed standard time prediction can be useful for product variant 
assessment at an early stage of product development. In the proposed approach, the 
standard assembly time was predicted using an ANN.  
This study aimed to develop an approach for setting standard assembly time that is 
easy to use and sufficiently precise. The main contribution of this research is the 
holistic identification of product and manufacturing assembly characteristics that are 
useful in predicting the standard assembly time. In this research, an ANN was applied 
as the prediction tool. Data that is easy to obtain in an enterprise was used for 
experiments. The industrial application of the proposed approach was presented in the 
case study. Product and process engineers are likely users of the proposed approach.  
In the presented approach, an OAV framework was applied, where the object is 
interpreted as a group of assembly factors, attributes were analysed as a set of 
variables that influence the standard assembly time, and attributes can assume 
particular values that can be qualitative or quantitative. In the case study, different 
ANN variants were compared as tools for predicting the standard assembly time. The 
best ANN, with a very good performance, was found.  

5. Conclusion  

There is a gap in the standard assembly time setting methods useful during an early 
stage of product development. ANN can be successfully applied for standard time 
setting in the assembly process. The development of an ANN model for the assembly 
process can be based on the following steps: developing training, testing and 
verification sets and finding the best ANN structure, which is the assembly process 
model. The assembly process was analysed and features (attributes) that influence the 
standard time were selected. The attributes were divided into the following categories: 
workstation layout attributes, such as distances and feeding method; connection type 
between components, such as fastener type and force needed; product component 
characteristics, such as size, weight, shape and material; and tools and equipment, 
such as tool type and equipment type. The features that influence the standard time 
can be divided into two main categories, constant and variable attributes. Constant 
attributes have the same value for the whole assembly process and can be used for 
process characteristics. Variable attributes are different for various assembled 
products. An ANN training set can be created using attributes that have a value 
variable. Predetermined motion time systems are useful methods of setting the 
standard time for the development of ANN training set. 
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