

Yuliia STEPANENKO1, Valeriia SOLODOVNIK2

Scientific supervisors: Andriy FESENKO3, Larysa MURYTENKO4

DOI: https://doi.org/10.53052/9788366249868.24

BEZPIECZNE PRZECHOWYWANIE HASŁA Z FUNKCJĄ

KRYPTOGRAFICZNEGO HASH

Streszczenie: Przeprowadzana jest analiza metod autoryzacji użytkowników w systemie.

Analizowany jest algorytm haszowania hasła. Przeprowadzane jest porównanie popularnych

algorytmów haszujących.

Słowa kluczowe: hasło, algorytm haszowania, uwierzytelnianie, łamanie haseł, funkcja
deterministyczna, iteracje, sól.

SECURE PASSWORD STORAGE WITH CRYPTOGRAPHIC HASH

FUNCTION

Summary: The analysis of methods of user authorization in the system is carried out. The

password hashing algorithm is analyzed. Comparison of popular hashing algorithms is carried

out.

Keywords: password, hash algorithm, authentication, password cracking, deterministic

function, iterations, salt.

1. Formulation of the problem

Passwords play a critical role in our whole life. It’s the most common security method

to authenticate or verify a user’s online identity [1]. They provide a powerful guard

1 Taras Shevchenko National University of Kyiv, Faculty of Informaition Technology, Cyber

Security and Information Protection: juliastepanenko2900@gmail.com
2 Taras Shevchenko National University of Kyiv, Faculty of Informaition Technology, Cyber

Security and Information Protection: valeriamin6@gmail.com
3 Taras Shevchenko National University of Kyiv, Faculty of Informaition Technology, Cyber

Security and Information Protection: aafesenko88@gmail.com
4 Taras Shevchenko National University of Kyiv, Faculty of Informaition Technology, Cyber

Security and Information Protection: myrutenko.lara@gmail.com

236 Y. STEPANENKO, V. SOLODOVNYK, A. FESENKO, L. MYRYTENKO

against unauthorized access to systems and data, and are ubiquitously used in various

online activities such as communication, learning and, of course, shopping and

banking. User authentication via password relies on the something you know

authentication factor, i.e., you know some secret that no one else does. Although two

other authentication factors something you have (e.g., hardware token) and something

you are (e.g., fingerprint) have not gained a wide acceptance on the Internet, above

all because of their high cost but limited flexibility [2]. On the other side, passwords

are very simple, inexpensive, easy to implement, and convenient to use for users as

well as developers. Consequently, they occupy the key position in online user

authentication, and this situation will not change in the foreseeable future due to the

above reasons.

Unfortunately, passwords suffer from two seemingly intractable problems: password

cracking and password theft. Password cracking (also known as password guessing)

is an attack in which an adversary attempts to guess the users’ password. For security

reasons, it makes sense to store passwords in hashed form. This guards against the

possibility that someone who gains unauthorized access to the database can retrieve

the passwords of every user in the system [3].

Hashing performs a one-way transformation on a password, turning the password into

another String, called the hashed password. «One-way» means that it is practically

impossible to go the other way – to turn the hashed password back into the original

password. There are several mathematically complex hashing algorithms that fulfill

these needs. By default, the Personalization module uses the MD5 algorithm to

perform a one-way hash of the password value and to store it in hashed form. The

hashed password value is not encrypted before it is stored in the database. When

a member attempts to log in, the Personalization module takes the supplied password,

performs a similar one-way hash and compares it to the database value. If the

passwords match, then login is successful. This is how it works. As stated by OWASP,

hash functions used in cryptography have the following key properties:

• it's easy and practical to compute the hash, but difficult or impossible to re-

generate the original input if only the hash value is known;

• it's difficult to create an initial input that would match a specific desired

output.

Thus, in contrast to encryption, hashing is a one-way mechanism. The data that is

hashed cannot be practically «unhashed» (Fig. 1).

There ia another property that makes hash functions suitable for password storage.

This is the fact that they are deterministic. A deterministic function is a function that

given the same input always produces the same output. This is vital for authentication,

since we need to have the guarantee that a given password will always produce the

same hash; otherwise, it would be impossible to consistently verify user credentials

with this technique.

There are numerous functions used for password hashing including: MD5, SHA1,

SHA256 - SHA512, PBKDF2, BCRYPT, SCRYPT and Argon2.

 Secure password storage with cryptographic hash function 237

Figure 1. Hashing algorithm flow example – one-way

A hashing scheme takes as an input a plaintext password and transforms it into a hash

value considering three parameters: hash function, iterations and salt. More

specifically, the core parameter of a hashing scheme is the employed hash function,

such as MD5 [3]. The iterations parameter is optional and specifies the number of

consecutive executions of the employed hash function to compute the hash value. For

example, if a hashing scheme uses the MD5 hash function and the number of iterations

is 100, then it will conduct 100 consecutive executions of MD5 to compute the

password hash. The number of iterations can be adjusted so that the computation of

the hash value takes an arbitrarily large amount of computing time (also known as key

stretching) [4]. In this way, iterations are used to slow down password guessing

attacks. Regarding the last parameter, the salt is a cryptographically-strong random

value that is combined with the value to be hashed. The salt is known to the system

and is unique for each password stored. Consistently mixing the salt with the password

each time the password is hashed creates a unique hash value even if others use the

same password [5]. Using random 6 salts, rainbow tables become ineffective. That is,

an attacker won’t know in advance what the salt value is and therefore he or she cannot

pre-compute a rainbow table.

2. Conclusion

Various types of cryptographic systems exist that have different strengths and

weaknesses. Typically, they are divided into two classes; those that are strong, but

slow to run and those that are quick, but less secure.

The service should store a cryptographically strong hash of passwords that cannot be

reversed. Hashing is the process of performing a one-way transformation of any string

of bytes into a different and deterministic new string of characters. There are many

examples of hashes that are appropriate for use to store passwords, such as PBKDF2,

Argon2, Scrypt, or Bcrypt.

According to Jeff Atwood, “hashes, when used for security, need to be slow.”

A cryptographic hash function used for password hashing needs to be slow to compute

because a rapidly computed algorithm could make brute-force attacks more feasible,

especially with the rapidly evolving power of modern hardware. We can achieve this

by making the hash calculation slow by using a lot of internal iterations or by making

the calculation memory intensive. It's important to achieve a good balance of speed

and usability for hashing functions. A well-intended user won't have a noticeable

performance impact when trying a single valid login.

Cryptography is a constantly changing field. However, experience has shown that

there are some algorithms to avoid when storing passwords. Password guessing

238 Y. STEPANENKO, V. SOLODOVNYK, A. FESENKO, L. MYRYTENKO

attacks greatly benefit from multiple processing cores, especially for hashing schemes

that can be executed in parallel. MD5, SHA1, SHA256, SHA512 hash functions can

be executed in parallel on multi-processor systems, fact that increases significantly

the efficiency of password guessing attacks. MD5 and SHA-1 are common hashing

algorithms used today but it’s a necessary to avoid these algorithms because these

technologies are deprecated. There are many examples of hashes that are appropriate

for use when storing passwords, such as PBKDF2, Argon2, Scrypt, or Bcrypt.

REFERENCES

1. HERLEY C., VAN OORSCHOT P., PATRICK A. S.: Passwords: If we’re so

smart, why are we still using them? In Proceedings of the Financial Cryptography

and Data Security Conference (2009).

2. STRAHS B., YUE C., WANG H.: Secure Passwords Through Enhanced Hashing,

1–3.

3. NTANTOGIAN C., MALLIAROS S., XENAKIS C.: Evaluation of Password

Hashing Schemes in Open Source Web Platforms, 5-7.

4. BELLARE M., CANETTI R., KRAWCZYK H.: Keying hash functions for

message authentication. In Proceedings of Crypto’96 (1996), 1–15

5. MADDOX I., MOSCHETTO K.: Modern password security for system designers.

What to consider when building a password-based authentication system, 3-16.

