
������������������������������ �!!�����������

Yurii SHCHERBYNA1, Nadiia KAZAKOVA2, Oleksii FRAZE-FRAZENKO3

WYKORZYSTANIE GENERATORA XORSHIFT DO SYMULACJI

PROCESÓW STOCHASTYCZNYCH

Streszczenie: Przeprowadzono ocen� liniowego generatora kongruentnego oraz generatora

"Mersenne Twister" i wykazano, �e ka�da nierównomierno�� liczb na wyj�ciu generatora

wybranego jako �ródło losowo�ci znacz�co wpływa na jako�� modelowanego procesu.

Zbadano ekonomiczny z punktu widzenia zasobów obliczeniowych generator typu Xorshift

i zaproponowano metod� rozrzedzania danych wej�ciowych w stosunku do numerycznego

modelu przepływu poprzez usuwanie elementów, które nie pasuj� do rozkładu jednostajnego.

Opisano kryterium odrzucania takich elementów.

Słowa kluczowe: modelowanie, liniowy generator kongruentny, generator Mersenne Twister,
generator Xorshift, metoda funkcji odwrotnych, test chi kwadrat Pearsona, postprocessing
przepływu numerycznego.

USING THE XORSHIFT GENERATOR TO SIMULATE

STOCHASTIC PROCESSES

Summary: The evaluation of the linear congruent generator and the "Mersenne Twister"

generator was performed and it was shown that any unevenness of the numbers at the output of

the generator selected as a source of randomness significantly affects the quality of the process

to be modeled. The Xorshift-type generator, which is economical from the point of view of

computing resources, was studied and a method of thinning the input in relation to the numerical

flow model by removing elements that do not fit into a uniform distribution was proposed. The

criterion for rejecting such elements is described.

Keywords: Modeling, linear congruent generator, Mersenne Twister generator, Xorshift
generator, inverse function method, Pearson's chi-square test, numerical flow post-processing.

1. Introduction

Recently, computer modeling has been experiencing rapid development. It is used not

only at the preliminary stages of designing complex technological systems and

1 Engineering Science Ph.D., National University "Odessa Law Academy", associate professor

at the department of information technology, shcherbinayura53@gmail.com
2 Prof. D.Sc., Odesa State Environmental University, Head of Department of information

technology, kaz2003@ukr.net
3 Engineering Science Ph.D., Odesa State Environmental University, associate professor at the

department of information technology, frazenko@gmail.com

���� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

processes, but also allows for optimization and experimental evaluation of their

constituent parts during tests.

The essence of modeling is to conduct a series of computational experiments, the

purpose of which is scientific, analysis, interpretation and comparison of simulation

results with the behavior of a real physical system or process. For this, software

packages are created during modeling, which describe the behavior of systems

and their parts, taking into account their interaction with each other and the external

environment.

For the study of stochastic systems, statistical modeling is used, which involves

multiple repetition of tests followed by processing of the obtained results. Usually,

such methods involve the presence of pseudorandom number generators (PRNG) with

a uniform distribution law on the interval Z&� �] as the main source of the stochastic

process. Moreover, the adequacy of the model to be implemented, regardless of the

chosen modeling method, depends significantly on the degree to which the numerical

flow at the output of the generator is uniform.

Digital replication of any pattern or process involving randomness requires that the

chosen generation method produces sequences of numbers each of which can be

reproduced repeatedly and meet a given uniformity criterion. Modeling experience

shows that any unevenness significantly affects the quality of the process at the output

of the computer model.

At the moment, there are a large number of methods for generating high-quality

pseudorandom number generators, which include the MT generator, known as the

Mersenne twister, MT, [2], Xorshift [3], linear congruent generator (LCG) [4] and

many others. They output 32-bit or 64-bit numbers in [0, 2 32) and [0, 2 64) intervals.

Unfortunately, all of them, without exception, do not pass the test for the uniformity

of the probability distribution of the generated numbers and are not only unsuitable

for cryptographic needs, but also for direct use in modeling [5]. Based on this, every

time creating a computer model, developers should check the selected generator and,

depending on the results, use additional methods of their randomization.

Unfortunately, uneven distribution of the output numerical stream is not the only

drawback of relatively simple arithmetic generators of pseudo-random numbers.

Another of their disadvantages is the consumption of a large number of computational

operations during the generation process.

As shown in [5], the use of division operations and reduction of numbers by the

appropriate modulo increases the amount of necessary computing resources, at least

by an order of magnitude.

Despite the fact that the vast majority of known arithmetic algorithms were

investigated and rejected as sources of randomness D. Knut [6] back in the last

century, developers spare no efforts to improve them. Moreover, these efforts are

simultaneously aimed at bringing the output numerical flow to a given level of

uniformity of distribution, and at the most effective use of computing resources.

Most of the libraries of almost all known specialized software environments designed

for solving research and engineering problems include such software generators as the

MT generator, which has an extremely long repetition period (W�ffeg @ � bit)

and LCG. They both have both of the described disadvantages, and this especially

applies to the MT generator. It is this disadvantage that makes them unsuitable for

direct use for modeling purposes.

� E��/����1�M�����2���1/1�%���������0=&%�1����3�%���3����31��1�� ����

With this in mind, the goal of the study is to choose a simple and affordable generator

that would be efficient in terms of computing resources and would provide the

required uniformity of the output numerical flow.

2. Generator selection

As already mentioned, today is MT the default pseudorandom number generator is

used by most C compilers, programming environments such as Python, the

mathematical computing system Maple, and many others. Its supporters are primarily

attracted by an extremely long repetition period, although this fact is not an indicator

of quality and the implementation of such a generator requires large amounts of

memory. Recent studies [7] show that it has serious shortcomings and should not be

considered as a universal generator.

“Mersenne Twister” is the general name of a whole family of PRNG, the work of

which is based on linear transformations over binary field �� � `&��a. This means

that the state of the generator is considered as n is a dimensional vector over the field

��
and each subsequent state is a
��-linear transformation. Since the sum in
�� is

just an operation XOR, such transformations are easily implemented and quickly

calculated.

The main problem with using the MT generator for simulation purposes is that it fails

statistical tests such as the Marsaglia binary rank test [8] and the linear complexity

test [9].

The practice of using MT generators over the past 20 years has shown that its

repetition period is W�ffeg @ � of bits is too large. The implementation of such a

generator, despite the simplicity of the operations underlying its algorithm, requires

large amounts of processor cache memory, and this, in turn, reduces its performance.

Even in situations where the initial number is chosen from the set y W�hi of possible

options, the chance to get identical sequences is almost zero and the use of a generator

that wastes a huge number of bits of processor cache memory does not make sense.

It is clear that an efficient model requires a simple, fast generator that does not

consume an excessive amount of resources. At one time, George Marsaglia [10] gave

mathematical justification of most of those described by Donald Knuth [6], iterative

generators, which, after appropriate refinement, could be used as a source of

randomness in simulation. In particular, he showed that an iterative generator requires

the set of numbers to be the j�inverse of a function k

over a set j� and uniform random

selection of the initial number l9�
j. Each subsequent number at the output of the

iterative generator is formed according to the principle

k�l�� k��l�� ke��l�� m�

 ���

where
k��l� means k�k�l�,
ke�l� means k�
k��l�� etc. Usually, plural
j is the set

of all possible 32-bit numbers, which represent m - tuples
��� ��� m � ��, and k

 is a

function that converts the current tuple into the next tuple.

If f is a mutually unique function over j, then for any initial number l, uniformly

selected from j, a random variable k�l�, will also be a uniformly distributed quantity.

In case of random selection of a number
lfrom j, through the transformation

k�l�� k��l�� m
 the formation of a sequence of homogeneous elections with j. These

���� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

choices will not be random, but when used for simulation purposes, they behave

and appear to be random.

The most famous iterative generator included in most software environments is the

LKG generator. Each subsequent number at its output is formed from the previous

number according to the principle

�2 � ��2*� � �
�no
�
 �W�

This is the most well-known method of obtaining pseudorandom numbers, which

requires the definition of parameters such as modulus
�, an additive constant � and

a random initial numeric �9. If � the primary root of the number space F, a �9is

a random initial number from the set

j � `�� W� m � F @ �a�

 �p�

then the numerical sequence created according to principle (2) will be strictly periodic

with a period F @ � and each element of this sequence will be a pseudo-random

uniformly distributed value in multiples j�

The problem is that getting the value ��
�no
F for a prime number F, is usually much

more difficult than obtaining a value ��
�no
We�, because in the latter case, for most

processors, it is performed automatically.

Thus, it can be argued that the LKG repetition period of the generator is equal to We�,

a �9 numbers belong to the plural j � `�� W� m � We� @ �a.
In search of an economical, from the point of view of computational resources, an

PVC generator, George Marsaglia developed an algorithm known as Xorshift [11].

Today, there are a large number of its modifications, but in general, such a generator

is a number of linear feedback registers (LFSR), which provide special efficiency

without using excessively sparse polynomials.

The theory of Xorshift generators is based on the use 32 - or 64 -bit integer as an

element of the vector space in the binary field modulo 2. The composition of such

vectors is performed through the xor operation. Together with the shift operation, this

allows you to implement the necessary linear transformations in the vector space using

a minimum amount of computing resources.

Xorshift Algorithm considers the set of all nonzero binary vectors � q pW on j, a k

as a linear transformation over j, represented by a non-degenerate binary matrix r

size pW q pW. In this case, for a random number s�
j the sequence at the generator

output is described as sr� sr�� sre� m� if and only if the order ris even We� @ �

in the group of non-degenerate binary matrices of size pW q pWand the sequence has

a period We� @ �.

Marsaglia showed that there is a simple and fast way of forming the matrix product

sr can be implemented if the order

r � �t � u\��t � vw��t � ux��

 �y�

where u is the matrix that affects the left shift by one. In C, this operation looks like

s
z � �s { ��. Accordingly, the matrix su\implements the shift s
z � �s { ��.

Because matrix vis a transposed matrix u, its use implements a right shift by one

s
z � �s | ��. This means that (4), for a random 32-bit number from j, makes it

possible to get each subsequent number in the sequencesr� sr�� sre� m For

example, in the C language it might look like this

� E��/����1�M�����2���1/1�%���������0=&%�1����3�%���3����31��1�� ����

s
z � s { �p
[
s
z � s { �}
[
s
z � s ~ �

 ���

In work [10] it is shown that there are no 32- or 64-bit vectors of type (4), with one or

two shifts, that have a full period. To obtain the maximum possible period, matrices

are needed that implement three types of shifts. Marsaglia showed that there are 81

triples of numbers Z�� �� �],� ~ � for which a binary matrix of type (4) has a period

We� @ �]. As with all LFSRs, the Xorshift parameters of the generator should be

chosen as carefully as possible.

Sequences of this type with combinations Z�� �� �], given in the works [10,11] are the

best in terms of speed and minimal computer system resources. Such generators pass

the BigCrush test from the TestU 01 package, but their lower bits fail the linearity

test.

Thus, the Xorshift generator proposed by George Marsaglia looks most suitable for

use in non-cryptographic projects and, in particular, in the simulation of stochastic

processes.

3. Randomization of the numerical flow from the Xorshift generator

The term "chance" refers to the uncertainty of an event that may occur in the future.

From this point of view, arithmetic pseudo-random number generators generate

numerical streams that appear to the outside observer to be random or almost random.

But for the needs of modeling one randomness is not enough, it is necessary that the

stream of numbers at the output of the PRN generator is evenly distributed, but this

requirement is not sufficiently provided by any of the known generators. The fact is

that each subsequent number at the output of the iterative recurrent generator is the

result of performing mathematical operations on one or several previous numbers.

Generator type and initial conditions provide only the period of the number flow, but

not the uniformity of the distribution of numbers within the period. The problem is

that, regardless of the method of forming a model of a particular stochastic process,

the unevenness of the numbers at the output of the generator chosen as a source of

randomness is completely transferred to the process that is the goal of modeling.

Today, the efforts of mathematicians are focused on finding ways to improve RNGs

intended for the purposes of cryptography. As for modeling, it is still considered not

the most basic stage of design and, therefore, a coincidence within 5÷10 percent with

the theoretically expected value of the stochastic process at the output of the model is

considered sufficient, but it is also not provided by generators that output a non-binary

stream of integers or real numbers. For example, the Xorshift128 generator developed

by G. Marsaglia, with the length of the original sequence of 1000 positive random 4-

byte numbers, gives the 16-segment histogram shown in Figure 1.

As the tests show, the indicator
��- Pearson, calculated taking into account 15%

accuracy, usually significantly exceeds the critical permissible value.

In many sources and in the works of G. Marsaglia himself [10], it is indicated that the

lower digits of the numbers generated by the generator are less "random" than the

numbers in their higher digits. Because of this, it is suggested to discard the lower

digits of the original numbers or to exchange them for the higher digits of other

numbers generated by the same generator. G. Marsaglia himself solved this problem

��� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

by using logical operations and operations landslide This allowed him to create one

of the most economical and fast-acting but cryptographically unstable generators.

�

Figure 1. Histogram of the distribution of PVCs obtained using

the Xorshift function 128

Figure 2 shows a diagram that explains the principle of such transformations for

Xorshift128.

�

Figure 2. Scheme of the algorithm of the Xorshift 128 generator

� E��/����1�M�����2���1/1�%���������0=&%�1����3�%���3����31��1�� ����

The program fragment that implements such an algorithm has the following form.

x = 123456789

y = 362436069

z = 521288629

w = 88675123

t = x ^ ((x << 11) & 0xFFFFFFFF);

x = y;

y = z;

z = w;

w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));

When starting the generator, four initial numbers are set
�� �� � and �. They
determine the internal state of the generator. Each subsequent number � � `���
���
m �
���a is formed as a combination of digits �and a previous value �as shown in the
code snippet, followed by a number shift
� � �� � � � and � � �_ According to
Marsaglia, it is precisely these shifts that increase the "randomness" of lower order
numbers.

One controversial question arises here: do the lower order bits of a number really

reduce the randomness of the numbers at the output of the generator? If we consider

an ordinary counter, then the numbers in the lower digits of the numbers at its output

are indeed repeated with a higher frequency, but the PRN generator is not a counter.

This is the first. Second, there are generally few numbers that are limited to one byte

or shorter. A generator of such numbers would have a limited period in size W2 � 	 '
�.

It is within such limits that the "randomness" of the lower bits at the output of the

generator should be evaluated. If the sample size is larger than the repetition period,

the picture will not be objective.

For example, the numbers in the last byte at the output of the MT generator give the

sequence distribution of 256 numbers shown in Figure 3(a).

For 256 numbers in the highest byte at the output of this sequence, the distribution

pattern does not differ (Figure 3b).

The numbers shown on these diagrams whose horizontal coordinates coincide are the

same numbers. The same is true for numbers for which the vertical lines coincide

coordinates Repeated repetition and analysis of the diagrams shown in Figures 3a and

3b points to the dubiousness of the statement that the combinations of bits in the lower

bytes are less random. In older bytes, the picture is the same.

This is especially noticeable if the size of the number is smaller than a byte. For

example, in the same experiment, for 	 � �, in the least significant byte, the

distribution pattern looks as shown in Figure 3c. In the most significant byte, it looks

like Figure 3d.

Thus, the probability of a number in a numerical stream should be considered in its

entirety. It should also be remembered that for the needs of modeling, as a rule, real

numbers are used and their lower digits are not deterministic.

��!� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

Figure 3. Distribution of 256 numbers at the output of the MT generator

in the last byte

The positive effect of the algorithm embedded in Xorshift128 is that the use of logical

bit operations and shift operations provides "whitening" and "shuffling" of the bits of

numbers at the RNG output, as it is done in cryptographic generators. But, despite its

positive qualities, this generator, like its other variants, does not provide greater

uniformity of output numbers, compared to existing other non-cryptographic

generators. This is clearly visible from the histogram shown in Figure 1. For most

numerical samples at the output of the generator, the
��-Pearson indicator

significantly exceeds the critical value.

As shown in [12], uniformity can be ensured by methods of post-processing of the

numerical flow at the output of the generator. First of all, it means "rejecting" those

numbers that do not fit into the uniform distribution. Usually, a criterion is chosen to

assess uniformity ��- Pearson, because it is not tied to the type of distribution, and if

a stream does not meet the requirements of this criterion, then, most likely, it will not

satisfy the other criteria. The quality indicator of this criterion is determined by the

rule

6� �
,
�2+3N+

H�;

N+
H

�
��� �
 ���

where � is the number of histogram segments, 	�andJ�
H – the number of random

numbers of the output stream that actually fell into the ith interval and their expected

number, respectively. Expected number with uniform distribution J�
H is defined as

J��.

� E��/����1�M�����2���1/1�%���������0=&%�1����3�%���3����31��1�� �� �

The paper [13] gives recommendations on how to choose the optimal number of

histogram intervals and the methodology for assessing the coincidence of the

distribution of the numerical flow with its expected type. It is determined that when

modeling a stochastic process, the parameters of which are known, the number of

histogram intervals is not of great importance and should lie within 12÷18.

One of the methods of selecting numbers from the stream at the RNG output is

described in [14]. Its essence is that, based on the type of distribution, the sample size

J, and number of intervals �, the number of numbers falling into each interval is

calculated. In the case of uniform distribution, these values should coincide and be

equal J���.

Mathematical expectation of the value ��that should fall into each separate segment

of the histogram ���2 ' �� ~ ��\� , calculated as �� � ����2 � ��\���W. In this

case, the sum of the numbers ��, which should fall into the ith interval, will be

approximately equal to the value ��
H � J�

H��. If the sum of numbers really fell into

the ith segment of the histogram ��, then every time it will differ from the expected

value ��
H.

Figure 4. Randomization of numbers at the output of the Xorshift128 generator.

Thus, each time, after the generator generates the next number, it must be checked,

firstly, in which segment of the histogram it fell and, secondly, how the sum of the

���� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

numbers in its segment has changed, as shown in Figure 4. If �� ' ��
H, this number is

added to the segment. Otherwise, the numbers falling into this segment are not taken

into account. The peculiarity of this method is that the segments are filled not one at

a time, but all in parallel, that is, only a small part of them is discarded as "extra". The

conducted studies show that it does not exceed 2÷3 percent.

Results of tests of sampling of real numbers of length J � �&Wy, at the output of the

Xorshift128 generator are shown in Figure 5.

Figure 5. Distribution of numbers from the output of the Xorshift128 generator in

histogram intervals without post-processing

If in this case the value of the accuracy indicator is chosen � � &��� and the number

of histogram intervals, which is equal to 16, is the critical value of the indicator

 ��- Pearson will be there �� � ��yW�W, and the real one is

���
� � ���W�5, that is,

such a sequence will not be uniform.

Figure 7 shows the distribution of numbers of this sequence in histogram intervals,

and the histogram itself is shown in Figure 6.

� E��/����1�M�����2���1/1�%���������0=&%�1����3�%���3����31��1�� ����

Figure 6. Histogram of the distribution of numbers from the output of the

Xorshift128 generator

In case of applying the described method of post-processing, distribution of 1024

numbers from the output of the Xorshift128 generator, 48 numbers will be rejected,

and 976 numbers will remain in the original sample. The distribution of these numbers

in histogram intervals is shown in Figure 7, and the corresponding histogram

is in Figure 8.

Figure 7. Distribution of numbers from the output of the Xorshift128 generator in

histogram intervals after post-processing

���� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

Multiple repetition of experiments shows that in the vast majority of cases the

indicator 6� ~ 6��
� . This means that the additional processing of the numerical stream

at the RNG output allows you to obtain a source of randomness suitable for modeling

stochastic processes. Thus, " slitting " of the incoming flow from MT generator, gives

significantly better simulation results from the point of view of their reliability.

Figure 8. Histogram of the distribution of numbers from the output of the

Xorshift128 generator after post-processing

4. Conclusions

From the results of the study of the vast majority of non-cryptographic generators of

pseudo-random numbers, which are part of such software environments as Boost,

Glib, C++, Python, Ruby, R, PHP, MATLAB and Autoit, it follows that they cannot

be directly used as a source of randomness for modeling stochastic processes by the

method of inverse functions or using the Monte Carlo method. In order for the

numerical sequences at the output of such generators to appear truly random, the

developers focused their efforts on providing them with as large a repetition period as

possible. The authors of the MT-generator were especially successful in this. For

testing such generators, the same test packages as for cryptographic generators are

usually used. For example, such a package as [15]. That is, the uniformity of the

numerical sequence is examined at the bit level. But the bit sequence divided into

bytes and converted into the format of integers or real numbers does not preserve the

uniformity of distribution, and for the needs of modeling, exactly such, uniformly

distributed, numbers are needed.

The elimination of the problem of the unevenness of the numerical flow from

recurrent generators was proposed from the very beginning to be solved by additional

processing methods, but all works in this area, again, are focused on cryptographic

generators, the requirements for which are orders of magnitude higher than for

generators used for simulation. In the latter case, it is sufficient that the numerical

sequence successfully passes the 6�-Pearson test.

� E��/����1�M�����2���1/1�%���������0=&%�1����3�%���3����31��1�� ����

In addition to unevenness, one problem is the excessive amount of computing

resources required by the operation of the MT generator offered in most software

environments. A good way to eliminate this problem is to use the one suggested and

described by George Marsaglia of the economic Xorshift generator and "sieving" the

numbers at its output in the proposed effective way, which involves focusing on the

mathematical expectation of numbers hitting each interval of the histogram.

REFERENCES

1. LAW A. M.: Simulation modeling and analysis, 5th. ed., McGraw-Hill

Education, 2 Penn Plaza, New York, 2015. URL:

https://industri.fatek.unpatti.ac.id/wp-content/uploads/2019/03/108-

Simulation-Modeling-and -Analysis-Averill-M.-Law-Edisi-5-2014.pdf

2. MAKOTO MATSUMOTO, TAKUJI NISHIMURA: Mersenne Twister : A 623-

dimensionally Equidistributed Uniform Pseudo-random Number Generator.

ACM Trans. Model. Comput. Simul. 8, 1998, 3–30.

https://doi.org/10.1145/272991.272995

URL: https://dl.acm.org/doi/pdf/10.1145/272991.272995

3. PANNETON F., L'ECUYER P.: On the Xorshift Random Number Generators.

ACM Trans. Model. Comput. Simul. 15, 2005, 346–361.

https://doi.org/10.1145/1113316.1113319. URL:

https://web.archive.org/web/20210126143346/http://www.iro.umontreal.ca/~le

cuyer/myftp/papers/xorshift.pdf

4. NIEDERREITER H.: Quasi-Monte Carlo methods and pseudo-random

numbers. doi: https://doi.org/10.1090/S0002-9904-1978-14532-7. URL:

https://www.ams.org/journals/bull/1978-84-06/S0002-9904-1978-14532-

7/S0002-9904-1978-14532-7.pdf.

5. LEMIRE D.: Fast Random Integer Generation in an Interval. doi:

https://doi.org/10.1090/S0002-9904-1978-14532-7.

URL: https://arxiv.org/pdf/1805.10941.pdf

6. DE KNUTH: The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, 3rd. ed., Boston, Mass, USA : Addison-Wesley, Longman

Publishing, Addison-Wesley, Reading, Mass, 1998. URL:

https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20

Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumeri

cal%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-

14%5D.pdf

7. VIGNA S.:. It Is High Time We Let Go Of The Mersenne Twister. 2019. URL:

https://www.researchgate.net/publication/336576895_It_is_high_time_

we_let_go_of_the_Mersenne_Twister.

8. MARSAGLIA G., LIANG-HUEI TSAY: Matrices and the structure of random

number sequences. Linear Algebra Appl. 67(1985), 147–156.

https://doi.org/10.1016/0024-3795(85)90192-2 URL:

https://www.sciencedirect.com/science/article/pii/0024379585901922

9. GLYN C.D.: A aspects of local linear complexity. Ph.D. Dissertation. University

of London. 1989. URL: https://repository.royalholloway.ac.uk/items/1d5398b7-

ba02-4820-8b50-60052a0bf7ad/1/

���� -=�����D�D	�A-+*,�+%���%�.*7*.�)*,��&1$����K�*7	LK�*7	+.��

10. MARSAGLIA G.: Random Number Generators. 2003. DOI 10.22237/ jmasm

/1051747320 URL: https://digitalcommons.wayne.edu/jmasm/vol2/iss1/2/

11. MARSAGLIA G.: Xorshift RNGs. 2003. DOI:10.18637/jss.v008.i14. URL:

https://www.researchgate.net/publication/5142825_Xorshift_RNGs

12. VON NEUMANN J.: Various techniques for use in connection with random

digits. Applied Math Series, Notes by GE Forsythe, in National Bureau of

Standards, 12(1951), 36 – 38, URL:

https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf.

13. KNUTH K.: Optimal Data-Based Binning for Histograms. University at Albany

(SUNY). Albany NY 12222, USA. 2013. URL:

https://www.academia.edu/50084430/Optimal_data_based_binning_for_histog

rams

14. SHCHERBYNA Y., KAZAKOVA N., FRAZE-FRAZENKO O.: The Mersenne

Twister Output Stream Postprocessing. CEUR Workshop Proceedings, 2021,

3200, pp. 265–273, URL:

http://star.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-

3200/paper39.pdf

15. A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications. SP 800-22 Rev. 1a, April 2010. URL:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

22r1a.pdf.

