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WYKORZYSTANIE GENERATORA XORSHIFT DO SYMULACJI 

PROCESÓW STOCHASTYCZNYCH 

Streszczenie: Przeprowadzono ocen� liniowego generatora kongruentnego oraz generatora 

"Mersenne Twister" i wykazano, �e ka�da nierównomierno�� liczb na wyj�ciu generatora 

wybranego jako �ródło losowo�ci znacz�co wpływa na jako�� modelowanego procesu. 

Zbadano ekonomiczny z punktu widzenia zasobów obliczeniowych generator typu Xorshift  

i zaproponowano metod� rozrzedzania danych wej�ciowych w stosunku do numerycznego 

modelu przepływu poprzez usuwanie elementów, które nie pasuj� do rozkładu jednostajnego. 

Opisano kryterium odrzucania takich elementów. 

 
Słowa kluczowe: modelowanie, liniowy generator kongruentny, generator Mersenne Twister, 
generator Xorshift, metoda funkcji odwrotnych, test chi kwadrat Pearsona, postprocessing 
przepływu numerycznego. 

USING THE XORSHIFT GENERATOR TO SIMULATE 

STOCHASTIC PROCESSES 

Summary: The evaluation of the linear congruent generator and the "Mersenne Twister" 

generator was performed and it was shown that any unevenness of the numbers at the output of 

the generator selected as a source of randomness significantly affects the quality of the process 

to be modeled. The Xorshift-type generator, which is economical from the point of view of 

computing resources, was studied and a method of thinning the input in relation to the numerical 

flow model by removing elements that do not fit into a uniform distribution was proposed. The 

criterion for rejecting such elements is described. 

 
Keywords: Modeling, linear congruent generator, Mersenne Twister generator, Xorshift 
generator, inverse function method, Pearson's chi-square test, numerical flow post-processing. 

1. Introduction 

Recently, computer modeling has been experiencing rapid development. It is used not 

only at the preliminary stages of designing complex technological systems and 
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processes, but also allows for optimization and experimental evaluation of their 

constituent parts during tests. 

The essence of modeling is to conduct a series of computational experiments, the 

purpose of which is scientific, analysis, interpretation and comparison of simulation 

results with the behavior of a real physical system or process. For this, software 

packages are created during modeling, which describe the behavior of systems  

and their parts, taking into account their interaction with each other and the external 

environment. 

For the study of stochastic systems, statistical modeling is used, which involves 

multiple repetition of tests followed by processing of the obtained results. Usually, 

such methods involve the presence of pseudorandom number generators (PRNG) with 

a uniform distribution law on the interval Z&� �] as the main source of the stochastic 

process. Moreover, the adequacy of the model to be implemented, regardless of the 

chosen modeling method, depends significantly on the degree to which the numerical 

flow at the output of the generator is uniform. 

Digital replication of any pattern or process involving randomness requires that the 

chosen generation method produces sequences of numbers each of which can be 

reproduced repeatedly and meet a given uniformity criterion. Modeling experience 

shows that any unevenness significantly affects the quality of the process at the output 

of the computer model. 

At the moment, there are a large number of methods for generating high-quality 

pseudorandom number generators, which include the MT generator, known as the 

Mersenne twister, MT, [2], Xorshift [3], linear congruent generator (LCG) [4] and 

many others. They output 32-bit or 64-bit numbers in [0, 2 32) and [0, 2 64) intervals. 

Unfortunately, all of them, without exception, do not pass the test for the uniformity 

of the probability distribution of the generated numbers and are not only unsuitable 

for cryptographic needs, but also for direct use in modeling [5]. Based on this, every 

time creating a computer model, developers should check the selected generator and, 

depending on the results, use additional methods of their randomization. 

Unfortunately, uneven distribution of the output numerical stream is not the only 

drawback of relatively simple arithmetic generators of pseudo-random numbers. 

Another of their disadvantages is the consumption of a large number of computational 

operations during the generation process. 

As shown in [5], the use of division operations and reduction of numbers by the 

appropriate modulo increases the amount of necessary computing resources, at least 

by an order of magnitude. 

Despite the fact that the vast majority of known arithmetic algorithms were 

investigated and rejected as sources of randomness D. Knut [6] back in the last 

century, developers spare no efforts to improve them. Moreover, these efforts are 

simultaneously aimed at bringing the output numerical flow to a given level of 

uniformity of distribution, and at the most effective use of computing resources. 

Most of the libraries of almost all known specialized software environments designed 

for solving research and engineering problems include such software generators as the 

MT generator, which has an extremely long repetition period (W�ffeg @ � bit)  

and LCG. They both have both of the described disadvantages, and this especially 

applies to the MT generator. It is this disadvantage that makes them unsuitable for 

direct use for modeling purposes. 
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With this in mind, the goal of the study is to choose a simple and affordable generator 

that would be efficient in terms of computing resources and would provide the 

required uniformity of the output numerical flow. 

2. Generator selection 

As already mentioned, today is MT the default pseudorandom number generator is 

used by most C compilers, programming environments such as Python, the 

mathematical computing system Maple, and many others. Its supporters are primarily 

attracted by an extremely long repetition period, although this fact is not an indicator 

of quality and the implementation of such a generator requires large amounts of 

memory. Recent studies [7] show that it has serious shortcomings and should not be 

considered as a universal generator. 

“Mersenne Twister” is the general name of a whole family of PRNG, the work of 

which is based on linear transformations over binary field �� � `&��a. This means 

that the state of the generator is considered as n is a dimensional vector over the field 

��
and each subsequent state is a 
��-linear transformation. Since the sum in 
�� is 

just an operation XOR, such transformations are easily implemented and quickly 

calculated. 

The main problem with using the MT generator for simulation purposes is that it fails 

statistical tests such as the Marsaglia binary rank test [8 ] and the linear complexity 

test [9]. 

The practice of using MT generators over the past 20 years has shown that its 

repetition period is W�ffeg @ � of bits is too large. The implementation of such a 

generator, despite the simplicity of the operations underlying its algorithm, requires 

large amounts of processor cache memory, and this, in turn, reduces its performance. 

Even in situations where the initial number is chosen from the set y W�hi of possible 

options, the chance to get identical sequences is almost zero and the use of a generator 

that wastes a huge number of bits of processor cache memory does not make sense. 

It is clear that an efficient model requires a simple, fast generator that does not 

consume an excessive amount of resources. At one time, George Marsaglia [10] gave 

mathematical justification of most of those described by Donald Knuth [6], iterative 

generators, which, after appropriate refinement, could be used as a source of 

randomness in simulation. In particular, he showed that an iterative generator requires 

the set of numbers to be the j�inverse of a function k

over a set j� and uniform random 

selection of the initial number l9�
j. Each subsequent number at the output of the 

iterative generator is formed according to the principle 

k�l�� k��l�� ke��l�� m�

 ���


where 
k��l� means k�k�l�, 
ke�l� means k�
k��l�� etc. Usually, plural
j is the set 

of all possible 32-bit numbers, which represent m - tuples 
��� ��� m � ��, and k

 is a 

function that converts the current tuple into the next tuple. 

If f is a mutually unique function over j, then for any initial number l, uniformly 

selected from j, a random variable k�l�, will also be a uniformly distributed quantity. 

In case of random selection of a number 
lfrom j, through the transformation 

k�l�� k��l�� m
 the formation of a sequence of homogeneous elections with j. These 
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choices will not be random, but when used for simulation purposes, they behave  

and appear to be random. 

The most famous iterative generator included in most software environments is the 

LKG generator. Each subsequent number at its output is formed from the previous 

number according to the principle 

�2 � ��2*� � �
�no
�
 �W�


This is the most well-known method of obtaining pseudorandom numbers, which 

requires the definition of parameters such as modulus 
�, an additive constant � and 

a random initial numeric �9. If � the primary root of the number space F, a �9is  

a random initial number from the set 

j � `�� W� m � F @ �a�

 �p�


then the numerical sequence created according to principle (2) will be strictly periodic 

with a period F @ � and each element of this sequence will be a pseudo-random 

uniformly distributed value in multiples j� 

The problem is that getting the value ��
�no
F for a prime number F, is usually much 

more difficult than obtaining a value ��
�no
We�, because in the latter case, for most 

processors, it is performed automatically. 

Thus, it can be argued that the LKG repetition period of the generator is equal to We�, 

a �9 numbers belong to the plural j � `�� W� m � We� @ �a. 
In search of an economical, from the point of view of computational resources, an 

PVC generator, George Marsaglia developed an algorithm known as Xorshift [11]. 

Today, there are a large number of its modifications, but in general, such a generator 

is a number of linear feedback registers (LFSR), which provide special efficiency 

without using excessively sparse polynomials. 

The theory of Xorshift generators is based on the use 32 - or 64 -bit integer as an 

element of the vector space in the binary field modulo 2. The composition of such 

vectors is performed through the xor operation. Together with the shift operation, this 

allows you to implement the necessary linear transformations in the vector space using 

a minimum amount of computing resources. 

Xorshift Algorithm considers the set of all nonzero binary vectors � q pW on j, a k 

as a linear transformation over j, represented by a non-degenerate binary matrix r 

size pW q pW. In this case, for a random number s�
j the sequence at the generator 

output is described as sr� sr�� sre� m� if and only if the order ris even We� @ �  

in the group of non-degenerate binary matrices of size pW q pWand the sequence has 

a period We� @ �. 

Marsaglia showed that there is a simple and fast way of forming the matrix product 

sr can be implemented if the order 

r � �t � u\��t � vw��t � ux��

 �y�


where u is the matrix that affects the left shift by one. In C, this operation looks like 

s
z � �s { ��. Accordingly, the matrix su\implements the shift s
z � �s { ��. 

Because matrix vis a transposed matrix u, its use implements a right shift by one 

s
z � �s | ��. This means that (4), for a random 32-bit number from j, makes it 

possible to get each subsequent number in the sequencesr� sr�� sre� m For 

example, in the C language it might look like this 
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s
z � s { �p
[ 
s
z � s { �}
[ 
s
z � s ~ �

 ���


In work [10] it is shown that there are no 32- or 64-bit vectors of type (4), with one or 

two shifts, that have a full period. To obtain the maximum possible period, matrices 

are needed that implement three types of shifts. Marsaglia showed that there are 81 

triples of numbers Z�� �� �],� ~ � for which a binary matrix of type (4) has a period 

We� @ �]. As with all LFSRs, the Xorshift parameters of the generator should be 

chosen as carefully as possible. 

Sequences of this type with combinations Z�� �� �], given in the works [10,11] are the 

best in terms of speed and minimal computer system resources. Such generators pass 

the BigCrush test from the TestU 01 package, but their lower bits fail the linearity 

test. 

Thus, the Xorshift generator proposed by George Marsaglia looks most suitable for 

use in non-cryptographic projects and, in particular, in the simulation of stochastic 

processes. 

3. Randomization of the numerical flow from the Xorshift generator 

The term "chance" refers to the uncertainty of an event that may occur in the future. 

From this point of view, arithmetic pseudo-random number generators generate 

numerical streams that appear to the outside observer to be random or almost random. 

But for the needs of modeling one randomness is not enough, it is necessary that the 

stream of numbers at the output of the PRN generator is evenly distributed, but this 

requirement is not sufficiently provided by any of the known generators. The fact is 

that each subsequent number at the output of the iterative recurrent generator is the 

result of performing mathematical operations on one or several previous numbers. 

Generator type and initial conditions provide only the period of the number flow, but 

not the uniformity of the distribution of numbers within the period. The problem is 

that, regardless of the method of forming a model of a particular stochastic process, 

the unevenness of the numbers at the output of the generator chosen as a source of 

randomness is completely transferred to the process that is the goal of modeling. 

Today, the efforts of mathematicians are focused on finding ways to improve RNGs 

intended for the purposes of cryptography. As for modeling, it is still considered not 

the most basic stage of design and, therefore, a coincidence within 5÷10 percent with 

the theoretically expected value of the stochastic process at the output of the model is 

considered sufficient, but it is also not provided by generators that output a non-binary 

stream of integers or real numbers. For example, the Xorshift128 generator developed 

by G. Marsaglia, with the length of the original sequence of 1000 positive random 4-

byte numbers, gives the 16-segment histogram shown in Figure 1. 

As the tests show, the indicator 
��- Pearson, calculated taking into account 15% 

accuracy, usually significantly exceeds the critical permissible value. 

In many sources and in the works of G. Marsaglia himself [10], it is indicated that the 

lower digits of the numbers generated by the generator are less "random" than the 

numbers in their higher digits. Because of this, it is suggested to discard the lower 

digits of the original numbers or to exchange them for the higher digits of other 

numbers generated by the same generator. G. Marsaglia himself solved this problem 
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by using logical operations and operations landslide This allowed him to create one 

of the most economical and fast-acting but cryptographically unstable generators. 

�

Figure 1. Histogram of the distribution of PVCs obtained using  

the Xorshift function 128 

Figure 2 shows a diagram that explains the principle of such transformations for 

Xorshift128. 

�

Figure 2. Scheme of the algorithm of the Xorshift 128 generator 
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The program fragment that implements such an algorithm has the following form. 
 

x = 123456789 

y = 362436069 

z = 521288629 

w = 88675123 

 

t = x ^ ((x << 11) & 0xFFFFFFFF); 

x = y; 

y = z; 

z = w; 

w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); 

 

When starting the generator, four initial numbers are set
�� �� � and �. They 
determine the internal state of the generator. Each subsequent number � � `��� 
���
m � 
���a is formed as a combination of digits �and a previous value �as shown in the 
code snippet, followed by a number shift
� � �� � � � and � � �_ According to 
Marsaglia, it is precisely these shifts that increase the "randomness" of lower order 
numbers. 

One controversial question arises here: do the lower order bits of a number really 

reduce the randomness of the numbers at the output of the generator? If we consider 

an ordinary counter, then the numbers in the lower digits of the numbers at its output 

are indeed repeated with a higher frequency, but the PRN generator is not a counter. 

This is the first. Second, there are generally few numbers that are limited to one byte 

or shorter. A generator of such numbers would have a limited period in size W2 � 	 ' 
�. 

It is within such limits that the "randomness" of the lower bits at the output of the 

generator should be evaluated. If the sample size is larger than the repetition period, 

the picture will not be objective. 

For example, the numbers in the last byte at the output of the MT generator give the 

sequence distribution of 256 numbers shown in Figure 3(a). 

For 256 numbers in the highest byte at the output of this sequence, the distribution 

pattern does not differ (Figure 3b). 

The numbers shown on these diagrams whose horizontal coordinates coincide are the 

same numbers. The same is true for numbers for which the vertical lines coincide 

coordinates Repeated repetition and analysis of the diagrams shown in Figures 3a and 

3b points to the dubiousness of the statement that the combinations of bits in the lower 

bytes are less random. In older bytes, the picture is the same. 

This is especially noticeable if the size of the number is smaller than a byte. For 

example, in the same experiment, for 	 � �, in the least significant byte, the 

distribution pattern looks as shown in Figure 3c. In the most significant byte, it looks 

like Figure 3d. 

Thus, the probability of a number in a numerical stream should be considered in its 

entirety. It should also be remembered that for the needs of modeling, as a rule, real 

numbers are used and their lower digits are not deterministic. 
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Figure 3. Distribution of 256 numbers at the output of the MT generator  

in the last byte 

The positive effect of the algorithm embedded in Xorshift128 is that the use of logical 

bit operations and shift operations provides "whitening" and "shuffling" of the bits of 

numbers at the RNG output, as it is done in cryptographic generators. But, despite its 

positive qualities, this generator, like its other variants, does not provide greater 

uniformity of output numbers, compared to existing other non-cryptographic 

generators. This is clearly visible from the histogram shown in Figure 1. For most 

numerical samples at the output of the generator, the 
��-Pearson indicator 

significantly exceeds the critical value. 

As shown in [12], uniformity can be ensured by methods of post-processing of the 

numerical flow at the output of the generator. First of all, it means "rejecting" those 

numbers that do not fit into the uniform distribution. Usually, a criterion is chosen to 

assess uniformity ��- Pearson, because it is not tied to the type of distribution, and if 

a stream does not meet the requirements of this criterion, then, most likely, it will not 

satisfy the other criteria. The quality indicator of this criterion is determined by the 

rule 

6� �
,
�2+3N+

H�;

N+
H

�
��� �
 ���


where � is the number of histogram segments, 	�andJ�
H – the number of random 

numbers of the output stream that actually fell into the ith interval and their expected 

number, respectively. Expected number with uniform distribution J�
H is defined as 

J��. 
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The paper [13] gives recommendations on how to choose the optimal number of 

histogram intervals and the methodology for assessing the coincidence of the 

distribution of the numerical flow with its expected type. It is determined that when 

modeling a stochastic process, the parameters of which are known, the number of 

histogram intervals is not of great importance and should lie within 12÷18. 

One of the methods of selecting numbers from the stream at the RNG output is 

described in [14]. Its essence is that, based on the type of distribution, the sample size 

J, and number of intervals �, the number of numbers falling into each interval is 

calculated. In the case of uniform distribution, these values should coincide and be 

equal J���. 

Mathematical expectation of the value ��that should fall into each separate segment 

of the histogram ���2 ' �� ~ ��\� , calculated as �� � ����2 � ��\���W. In this 

case, the sum of the numbers ��, which should fall into the ith interval, will be 

approximately equal to the value ��
H � J�

H��. If the sum of numbers really fell into 

the ith segment of the histogram ��, then every time it will differ from the expected 

value ��
H. 

 

Figure 4. Randomization of numbers at the output of the Xorshift128 generator. 

Thus, each time, after the generator generates the next number, it must be checked, 

firstly, in which segment of the histogram it fell and, secondly, how the sum of the 
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numbers in its segment has changed, as shown in Figure 4. If �� ' ��
H, this number is 

added to the segment. Otherwise, the numbers falling into this segment are not taken 

into account. The peculiarity of this method is that the segments are filled not one at 

a time, but all in parallel, that is, only a small part of them is discarded as "extra". The 

conducted studies show that it does not exceed 2÷3 percent. 

Results of tests of sampling of real numbers of length J � �&Wy, at the output of the 

Xorshift128 generator are shown in Figure 5.  

 

 

Figure 5. Distribution of numbers from the output of the Xorshift128 generator in 

histogram intervals without post-processing 

If in this case the value of the accuracy indicator is chosen � � &��� and the number 

of histogram intervals, which is equal to 16, is the critical value of the indicator 

 ��- Pearson will be there �� � ��yW�W, and the real one is 

���
� � ���W�5, that is, 

such a sequence will not be uniform. 

Figure 7 shows the distribution of numbers of this sequence in histogram intervals, 

and the histogram itself is shown in Figure 6. 
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Figure 6. Histogram of the distribution of numbers from the output of the 

Xorshift128 generator 

In case of applying the described method of post-processing, distribution of 1024 

numbers from the output of the Xorshift128 generator, 48 numbers will be rejected, 

and 976 numbers will remain in the original sample. The distribution of these numbers 

in histogram intervals is shown in Figure 7, and the corresponding histogram  

is in Figure 8. 

 

Figure 7. Distribution of numbers from the output of the Xorshift128 generator in 

histogram intervals after post-processing 
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Multiple repetition of experiments shows that in the vast majority of cases the 

indicator 6� ~ 6��
� . This means that the additional processing of the numerical stream 

at the RNG output allows you to obtain a source of randomness suitable for modeling 

stochastic processes. Thus, " slitting " of the incoming flow from MT generator, gives 

significantly better simulation results from the point of view of their reliability. 

 

 

Figure 8. Histogram of the distribution of numbers from the output of the 

Xorshift128 generator after post-processing 

4. Conclusions 

From the results of the study of the vast majority of non-cryptographic generators of 

pseudo-random numbers, which are part of such software environments as Boost, 

Glib, C++, Python, Ruby, R, PHP, MATLAB and Autoit, it follows that they cannot 

be directly used as a source of randomness for modeling stochastic processes by the 

method of inverse functions or using the Monte Carlo method. In order for the 

numerical sequences at the output of such generators to appear truly random, the 

developers focused their efforts on providing them with as large a repetition period as 

possible. The authors of the MT-generator were especially successful in this. For 

testing such generators, the same test packages as for cryptographic generators are 

usually used. For example, such a package as [15]. That is, the uniformity of the 

numerical sequence is examined at the bit level. But the bit sequence divided into 

bytes and converted into the format of integers or real numbers does not preserve the 

uniformity of distribution, and for the needs of modeling, exactly such, uniformly 

distributed, numbers are needed. 

The elimination of the problem of the unevenness of the numerical flow from 

recurrent generators was proposed from the very beginning to be solved by additional 

processing methods, but all works in this area, again, are focused on cryptographic 

generators, the requirements for which are orders of magnitude higher than for 

generators used for simulation. In the latter case, it is sufficient that the numerical 

sequence successfully passes the 6�-Pearson test. 
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In addition to unevenness, one problem is the excessive amount of computing 

resources required by the operation of the MT generator offered in most software 

environments. A good way to eliminate this problem is to use the one suggested and 

described by George Marsaglia of the economic Xorshift generator and "sieving" the 

numbers at its output in the proposed effective way, which involves focusing on the 

mathematical expectation of numbers hitting each interval of the histogram. 
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