
DOI: https://doi.org/10.53052/9788367652148.25

Michał RAJZER1, Bartłomiej SZKODNY2

Opiekun naukowy: Jacek IZYDORCZYK3

ROZWINIĘCIE MOŻLIWOŚCI PROTOKOŁU SIECI MESH

POPRZEZ POWIĘKSZENIE ILOŚCI MOŻLIWYCH POŁĄCZEŃ Z

UŻYCIEM WARSTWY OPROGRAMOWANIA

Streszczenie: Podczas gdy wiele protokołów sieciowych jest ogólnodostępnych, wiele z nich

ma swoje ograniczenia. Ten artykuł skupia się na rozwiązaniu problemów dostępnego

komercyjnie protokołu ESP-Now. Proponowane rozwiązanie jest dostępne online, na

platformie GitHub. Jest działającą korektą na ograniczenia ESP-Now, jak na przykład

ograniczona liczba węzłów w sieci.

Słowa kluczowe: ESP-NOW, sieć mesh, szyfrowanie.

EXTENDING THE ABILITIES OF A MESH NETWORK

PROTOCOL BY EXTENDING THE POSSIBLE CONNECTIONS

WITH A SOFTWARE LAYER

Summary: While many network protocols are available, many of them have limitations. This

paper explores a solution to the issues of a commercially available protocol, ESP-Now. The

proposed solution is open-sourced and available on GitHub. It is a viable fix for the limitations

of ESP-Now, such as a small number of maximum nodes in a network.

Keywords: article, ESP-NOW, mesh network, encryption.

1. Introduction

Many mesh networks for use in IoT devices, such as Zigbee and Thread, have been

devised recently. As such, many manufacturers have developed standards that aim to

repurpose existing solutions to compete in the quickly evolving space. For example,

Espressif have released a protocol called ESP-NOW, which allows the device

manufacturer to connect up to 20 devices. This is a significant limitation of the

1 Politechnika Śląska, AEiI, Informatics, michal.rajzer03@gmail.com
2 Politechnika Śląska, AEiI, Informatics, szkobart@outlook.com
3 Prof. dr hab. inż., Politechnika Śląska, AEiI, jacek.izydorczyk@ieee.org

298 Michał RAJZER, Bartłomiej SZKODNY, Jacek IZYDORCZYK

protocol, which is otherwise well-rounded, especially for electronics amateurs, as it

requires little preparation and is pretty cheap to implement. With this in mind, there

was an apparent need to expand the system's capabilities. The authors of this paper

created such an expansion of the system, and it has been open-sourced at

https://github.com/lrajzer/ESP-Meshed.

2. ESP-NOW technical specification

As stated above, ESP-NOW allows up to twenty devices to communicate. This is

accomplished using a predefined packet structure pictured below [1].

Table 1. ESP-NOW Message format

MAC

Header

Category

Code

Organizatio

n Identifier

Random

Values

Vendor

Specific

Content

FCS

24 bytes 1 byte 3 bytes 4 bytes 7~257 bytes 4 bytes

Table 2. The Vendor Specific Content

Element IDr Length Organizatio

n Identifier

Type Version Body

1 byte 1 byte 3 bytes 1 byte 1 byte 0~250 bytes

Furthermore, the ESP-NOW API allows for a so-called broadcast mode. All nodes on

the same network receive the message. This is accomplished by setting the MAC

Header only to comprise 1’s. This mode is used in the presented solution to increase

the number of available devices and allow us to add several additional features.

In the ESP-NOW API, the only easily accessible fields of the packet are MAC Header,

Message Length, and Body. In this situation, there are at most 274 bytes to manipulate,

but changing the MAC header is impossible due to the use of broadcast mode.

Therefore, there are only 250 bytes available. With this in mind, it was decided to

minimize the memory overhead when creating the “packet structure” for the solution.

The scheme illustrated below was created to balance the connected devices and the

data being transmitted.

Table 3. Devised header format

Message

ID

Control

Code

Receiver

Address

Sender

Address

Message

Data

13 bits 3 bits 12 bits 12 bits 0~245 bytes

This scheme was deemed optimal as it allows for a network of up to 4096 devices,

with the flexibility to enable self-healing, acknowledgements, and automatic network

configuration. The exact functions and mechanisms of the proposed solution are

outlined in the following sections.

 Extending the abilities of a mesh network protocol by … 299

3. Mechanics of the system

3.1. Message ID

Each message has its semi-unique ID. The message ID is created when the message

is sent by creating a random 12-bit number using the sender ID as the initial seed. The

last bit of the ID is used for message acknowledgements, which are defined in detail

below.

3.2. Control code bits

The devised header format allocates space for a 3-bit control code. It is used for

network connection, encryption and speed optimisation. Each of these processes is

described in detail below. The specific codes have the meanings as follows:

Table 3. Control codes (in binary) and their definitions

Control code (in binary) Definition

000 Normal packet

001 Extended mode packet

010 Ping request

011 Ping response

100 Possible speeds request

101 Possible speeds response

110 Public key request

111 Public key response

3.3. Extended mode packets

Due to planned expansions to the system, the control code 001 was reserved as the

extended mode packet. This type of packet is used now for exchanging private

encryption keys but may be changed later.

3.4. Message relaying

The main distinguishing feature between the software layer presented and the standard

mode of operation is the possibility to connect more devices and multi-hop

communication. In the presented implementation, it was opted to use a crude and

naïve approach to reduce the program complexity and the processing time needed for

each node. This allows the system to omit computationally or memory-expensive

routing algorithms[4][5]. To send data, the device broadcasts a message to its

neighbours, which they then broadcast to their respective neighbours, who then repeat

the process. To ensure that two or more nodes will not send the same message between

themselves indefinitely, each node stores a list of message IDs it has transmitted in a

user-defined period.

300 Michał RAJZER, Bartłomiej SZKODNY, Jacek IZYDORCZYK

3.5. Device connection

New nodes are added to the network in two modes, either with a designated ID or a

self-assigned one. The self-assigned ID process is quite complex, so a complimentary

flowchart was created to illustrate the steps.

Figure 1. Connection algorithm

The designated ID connection protocol is quite simple. The node first searches

through the channels to find a network. It may look for a network with a specific ID

if several separate networks are detected. It then joins the network using its specific

ID.

3.6. Network creation

A mesh network created using broadcast mode is easily resizable and can easily cover

large areas. The connection of the devices can theoretically span up to 1km[2] in ideal

conditions. Due to the use of a naïve routing algorithm, the user does not need to

change the structure of the code. The network also does not need to reconfigure itself.

Node has two initial modes: MJ (Mesh Join) and MC (Mesh Create). Upon boot up,

the node is in the MJ mode described in the Device connection section. If the device

 Extending the abilities of a mesh network protocol by … 301

fails to acquire a connection, it then switches to the MC mode. It searches for the least

used channel. The least used channel is chosen as the channel of the new network.

3.7. Speed selection

Depending on the device, the network speed necessary is quite different. For example,

a node that creates a massive amount of data needs a high throughput network, whilst

a battery-powered node with an e-paper display would be better served with a lower

speed to conserve energy. Thus, there exists a great need for speed negotiation. In this

system, it was implemented by the nodes exchanging a handshake upon first contact,

where they exchange their preferred maximum speed and default to the lower of the

two.

3.8. Acknowledgements

It is quite possible for a packet to get lost in a mesh network, so an acknowledgement

system was implemented. After sending a packet, the sender node waits for a user-

determined time for an acknowledgement packet. If such a packet does not reach the

sender node, the node retransmits the packet, and the cycle repeats a user-determined

number of times. On the receiver node, once a packet is received, it is assumed that

the network is intact, and the acknowledgement is sent only once without an

acknowledgement for the acknowledgement.

4. Security of the system

4.1. End-to-end encryption

The proposed solution has an inbuilt system to establish end-to-end encryption

between two nodes. When two nodes need a secure connection, the first one to

communicate creates a key that will be used for symmetric encryption. It then uses

control codes to access the public key of the second node and encrypts the symmetric

key using the public key. It is transmitted over the network just as any other packet

would be. Upon receiving the acknowledgement, both nodes switch to using the

symmetric encryption between themselves.

4.2. Possible vulnerabilities

Understanding mesh network vulnerabilities is essential in creating a secure

environment. Mesh network vulnerabilities include, but are not limited to, DoS,

masquerading, man-in-the-middle attacks, repudiation, replaying, and snooping. Most

of these are described below.

DoS is an active kind of attack. It can slow down or interrupt the service of the

network. The attacker targets one of the mesh network nodes and pumps too many

fake requests so that the node effectively becomes disconnected.

Masquerading is when one impersonates another node. The proposed system will be

protected from this kind of attack by encryption.

Modification is a tactic where the attacker gains access to a message, trying to modify

the information for their benefit. They can delay or delete the messages to harm the

system.

302 Michał RAJZER, Bartłomiej SZKODNY, Jacek IZYDORCZYK

Repudiation is the type of attack where the attacker impersonates the node already

using encryption in the mesh network. The proposed system is semi-vulnerable to

repudiation since the nodes to which the impersonated node was connected will enter

a locked state as two nodes with one address will try to set differing symmetric

encryption keys.

Replaying, the attacker anyhow obtains the copy of the sent message. He can then

emit the message, showing himself as a valid service provider. The user can overcome

it, but it was not implemented in the proposed solution.

Snooping is the most common attack vector, which relies on an attacker listening to

messages coming through the network. In the proposed system, encryption is strictly

necessary to protect against this attack.

5. Conclusion

Extending a mesh network protocol’s capabilities is possible using a software layer.

The proposed solution can accommodate up to 4096 nodes in a single network, while

the original protocol only allowed 20. At the same time, the solution allows for low

power consumption by using a naïve packet routing system while at the same time

being resilient against many types of attacks.

LITERATURE

1. ESP32 Documentation – ESP-NOW, https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/api-reference/network/esp_now.html, 20.09.2023

2. ESP32 Documentation – WiFi modes, https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/api-reference/network/esp_now.html, 10.10.2023

3. GUPTA S.K., et al.: Wireless Mesh Network Security, Architecture, and

Protocols. Security and Privacy Issues in Sensor Networks and IoT, IGI Global,

Hershey, PA, 2020, 1-27.

4. CILFONE A., DAVOLI L., BELLI L., FERRARI G.: Wireless Mesh

Networking: An IoT-Oriented Perspective Survey on Relevant Technologies”,

Future Internet 2019, 11(4), 99.

5. ALAMERI A., KOMARKOVA J., AL-HADHRAMI T.: Fuzzy-based

optimization of AODV routing for efficient route in wireless mesh networks,

PeerJ Computer Science, 2023, 9(1), 1508.

