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Abstract: The article discusses an own solution aimed at automating the creation of scenarios in RPG games. The development of 

this solution involved the use of artificial intelligence technology based on large language models. Additional data was sourced from 

online resources. Knowledge base methods and prompt templates were employed to prepare the AI for the role of a narrator. All 

components of the project were created using professional open-access tools. The solution was compared with the ChatGPT tool, 

highlighting differences in response times and ways of interaction with chatbots. An analysis was also conducted on the compilation 

time of the project and the response time to user inputs, depending on the size of the knowledge base and the large language model 

used. 
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Streszczenie W artykule omówiono własne rozwiązanie, którego głównym celem jest automatyzacja tworzenia scenariuszy w grach 

RPG. Do jego stworzenia posłużyło wykorzystanie technologii sztucznej inteligencji opartej na dużych modelach językowych. 

Dodatkowe dane zostały pobrane z zasobów sieciowych. Do nauczenia sztucznej inteligencji roli narratora wykorzystano metody 

bazy wiedzy oraz szablonów zapytań. Wszystkie części projektu utworzono przy użyciu profesjonalnych narzędzi typu open-access. 

Rozwiązanie porównano z narzędziem ChatGPT, gdzie przedstawiono różnice w czasach oczekiwania na odpowiedź a także w 

sposobie interakcji z chatbotami. Dokonano również analizy czasu kompilacji projektu oraz czasu udzielania odpowiedzi na wpisy 

użytkownika programu w zależności od rozmiaru bazy wiedzy oraz wykorzystanego dużego modelu językowego. 

Słowa kluczowe: chatbot; gra fabularna; RPG; duży model językowy; model językowy; LLM; baza wiedzy; 
 

1. Introduction 

The role of narration in RPG games is crucial, as it drives the story, immerses players, and enhances the overall 

gaming experience. Traditionally, narration in RPGs has relied heavily on pre-written scripts and human input, limiting 

the flexibility and dynamism of the storytelling. However, with the advent of advanced language models, there is now 

potential to automate and enhance this aspect of game design. The evolution of chatbot technology, dating back to the 

1960s, has laid the groundwork for this innovation [1]. Early chatbots only analyzed user input to generate responses, 
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but it wasnʹt until the 21st century, with the rise of natural language processing and, more recently, transformer-based 

architectures, that AI could begin to approach human-like conversation [2] [3] [4] [5]. This study explores the application 

of these cutting-edge technologies to automate narration in RPG games, promising to revolutionize how stories are told 

and experienced in the gaming world. 

The purpose of this work is to develop a chatbot application capable of serving as a scenario writer or narrator within 

a role-playing game (RPG). This approach aims to enhance the narrative flexibility and dynamism of RPGs by allowing 

the story to evolve in response to player actions in real time. To achieve this, a variety of advanced tools and 

methodologies were employed. The chatbot is hosted locally using the Ollama framework, ensuring seamless 

integration and performance within the gaming environment. Several state-of-the-art Large Language Models (LLMs), 

including Llama 2, Llama 3, Gemma, and Mistral, were utilized for their ability to generate complex, context-aware 

narratives. To fine-tune the chatbot’s behavior and ensure it aligns with the desired narrative style, the LangChain 

framework was applied, allowing for customizable and adaptive responses. Additionally, custom data was 

incorporated to provide the necessary context for the chatbot, ensuring that it can generate content that is not only 

coherent but also deeply integrated with the gameʹs world and storyline. 

The article ʺAn Overview of Chatbot Technologyʺ by Eleni Adamopoulou and Lefteris Moussiades outlines the 

process of how chatbots function and how they are created from scratch [6]. When designing a chatbot, it is essential to 

decide which features it will offer. This decision allows AI developers to more easily select the appropriate solutions in 

the form of algorithms, platforms, and tools needed to create the chatbot. Simultaneously, this decision helps end-users 

understand what to expect from the chatbot [7]. 

When a user inputs a query into a chatbot, the Understanding Component undertakes the task of interpreting the 

received text [8]. Using this interpreted query, the chatbot then accesses its resources to retrieve the data needed to 

formulate a response. These resources may include databases known as Knowledge Bases or APIs. 

The Response Generation Component uses Natural Language Generation (NLG) to create a human-like response 

based on the userʹs intent and context [9]. Generative models are the most advanced and are considered to simulate 

human responses effectively. They utilize machine learning algorithms and deep learning techniques. These models are 

based not only on the userʹs current query but also on their previous inputs. After generating the response using the 

selected method, the Dialogue Management Component updates the conversationʹs context.  

Large Language Models (LLMs) are types of neural networks used in artificial intelligence. They are employed in 

the design of advanced systems for understanding and generating text that resembles human language. This is achieved 

by training these models on the statistical relationships between words in a text and teaching them to predict the next 

words or tokens. These processes are known as self-supervised learning (SSL) or semi-supervised learning (also referred 

to as weak supervision) [10]. 

A key term in the context of language models is neural networks. These are computational systems that use 

algorithms to process information. They utilize neurons that process input data using activation functions and pass the 

result to subsequent neurons. Additionally, they have the capability to learn from the available data [11]. 

Deep learning is another important topic in the context of large language models, as it plays a significant role in 

neural networks and is one of the methods employed in machine learning. It is a type of neural network in which 

artificial neurons are divided into layers. Each layer is responsible for inputs and outputs. In each layer, data is processed 

to generate information, which is then used by the subsequent layer for its own tasks. This process enables the artificial 

intelligence model to learn by processing its own data [12]. 

Neural networks for large language models are categorized based on their architecture. The most common is 

transformer-based architecture, often combined with decoder-only architecture. This approach involves learning the 

context of data while simultaneously retaining its meaning. It achieves this by identifying relationships within 

sequential data. For example, it connects words and their meanings by utilizing the entire context of the sentence in 

which they appear [13] [14]. 

In summary, the primary aim of this work is to develop a solution that functions as a scenario writer in RPG games 

by utilizing large language models to create an advanced chatbot. The principal conclusion is that an approach 

combining a knowledge base, selected large language models, and tailored prompt templates successfully achieves the 

objective of creating an immersive gaming experience. 
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2. Materials and Methods 

To enable the chatbot to run locally, the Ollama tool was utilized, allowing for the download and implementation of 

selected large language models (LLMs) directly onto the machine. The LLMs used in this project were Llama 2, Llama 

3, Gemma, and Mistral. 

A custom application was developed in Python, a widely adopted programming language in the field of artificial 

intelligence, due to its robust libraries and community support. The LangChain library was integrated into the 

application to facilitate the personalization and fine-tuning of the models, providing flexible options for tailoring the 

chatbot’s behavior to specific requirements. Additionally, the FAISS (Facebook AI Similarity Search) library was 

employed to create a language base, optimizing the chatbotʹs ability to retrieve and process relevant information. 

 

The implementation process began with initializing the selected LLM within the application. The following code 

snippet demonstrates this initialization: 
 

llm = Ollama(model="llama2", 
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])) 
 
This initialization step sets up the LLM to be used, with a callback manager configured to handle streaming outputs, 

ensuring real-time processing and interaction capabilities within the chatbot. 

 

The next step involved loading the data that would serve as the chatbot’s knowledge base. The prepared dataset 

contained information on role-playing games that were deemed valuable for the chatbot during user interactions. This 

dataset included details on games played between players, as well as inputs from game masters, providing a rich source 

of contextual information for the chatbot. The knowledge base was stored in a .txt file format within the solution. 

 

The application was programmed to load this file, convert its contents into a usable format, and then split the text 

into manageable chunks to form vectors for efficient processing. The following code snippet demonstrates this process: 

 
loader = UnstructuredFileLoader("./dataSmall.txt") 
docs = loader.load() 
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=500) 
documents = text_splitter.split_documents(docs) 
vector = FAISS.from_documents(documents, embeddings) 

 

Here, the UnstructuredFileLoader is used to load the raw text data. The RecursiveCharacterTextSplitter then splits 

the document into chunks of 1,000 characters with a 500-character overlap, ensuring that the context is preserved across 

chunks. Finally, the FAISS (Facebook AI Similarity Search) library is used to create vectors from these chunks, enabling 

efficient retrieval and processing by the chatbot. 

 

To define the chatbot’s behavior at the launch of the project, a prompt template was employed. This was 

accomplished using the ChatPromptTemplate.from_messages() method, where key characteristics of the chatbotʹs 

behavior were specified. The following code illustrates this setup: 

 
initial_prompt_template = ChatPromptTemplate.from_messages([ 
    ("system", '''Be my Dungeon Master in a Dungeons and Dragons game. 
    Assume the role of an expert on the works and literary style of a high-quality novel. 
    Give a narrative description of everything that follows, based on my input. 
    Provide suitable names for other characters and places. 
    Have characters always use dialogue when interacting with me. 
    Always conduct all conversations and dialogues in quotation marks in the style of a high-
quality novel.'''), 
    ("user", "{input}") 
]) 

 

In this setup, the system prompt instructs the chatbot to act as a Dungeon Master in a Dungeons and Dragons game, 

emulating the narrative style of a high-quality novel. This configuration ensures that the chatbot generates immersive 

and contextually appropriate responses during user interactions. 
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The next step involves defining the chat function. In this method, the userʹs input and the conversation history are 

processed. The program then searches through the knowledge base using a similarity search to find relevant 

information, which is incorporated into the chatbot’s prompt template to enhance the response. 

def chat(user, conversation_history): 
    playersAction = user 
    conversation_history.append(playersAction) 
    search = vector.similarity_search(playersAction, k=3) 
    context = "\n".join([doc.page_content for doc in search]) 
    history = "\n".join(conversation_history[-5:]) 
     
    if len(conversation_history) == 1: 
        prompt_template = initial_prompt_template 
    else: 
        prompt_template = default_prompt_template 
 
    template = prompt_template.messages[0].prompt.template + ''' 
    Here is additional data to help you create a better answer. 
    Context for player's action: {context} 
    Player's action: {question}''' 

In this function, the userʹs action is appended to the conversation history. The vector.similarity_search() method 

retrieves the top three most relevant pieces of context from the knowledge base, which are then compiled into a single 

context string. Depending on whether it’s the first user input or a subsequent one, the appropriate prompt template 

(initial_prompt_template or default_prompt_template) is selected. The template is then enriched with additional 

context and the playerʹs action to guide the chatbot’s response generation. 

The final component of the application is the chain definition, which specifies the sequence of resources that the 

chatbot should use to generate responses: 

 
chain = initial_prompt_template | llm | output_parser 

This chain ensures that the chatbot follows the prompt template, leverages the selected large language model (LLM), 

and parses the output appropriately before delivering a response. 

3. Results 

 The custom solution successfully fulfilled the objective of acting as a story narrator for role-playing games. 

Three analyses were conducted to evaluate its performance. The first analysis compares the custom solution with a 

popular chatbot, ChatGPT, in its ability to act as a game master in an RPG setting. The second analysis focuses on 

comparing response times when using different large language models. The third analysis examines compilation times 

with varying sizes of the knowledge base. 

3.1. Comparison with ChatGPT 

In this analysis, a comparison was made between the custom solution and ChatGPT. The comparison focused 

on the initial stages of the game, where the user begins the role-playing session. For the chatbot to progress, it needs 

context regarding the game, particularly the setting of the campaign and the character the user is playing. The custom 

solution was designed to include this information, so the user does not need to input any data before starting the game. 

In contrast, ChatGPT, being a general-purpose chatbot, requires the user to manually provide information about their 

role-playing campaign before the game can begin. 

 

Another aspect compared was the response time. Since the custom solution is hosted locally, its response time 

depends on the processing speed of the hosting PC. On average, a modern personal computer using Llama 2 as the 

chosen language model returns a response within approximately 15 seconds. On the other hand, ChatGPT typically 

responds immediately after the user submits their prompt. 
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3.2. Comparison of response times with different large language models 

Response time is a crucial factor in a chatbot’s performance, as prolonged delays can disrupt the user 

experience and hinder the natural flow of conversation. An analysis was conducted to evaluate the response times 

across different large language models. Four models were tested, each selected for their similarity in parameter count. 

The same prompt was used for all models, with each chatbot asked to respond ten times. 

Table 1. Results of response time measurements for different large language models. 

Large Language Model Average Time (s) Median (s) 

Llama2 7B 12.1 12.3 

Llama3 8B 

gemma 7B 

mistral 7B 

27.73 

24.52 

22.94 

28.3 

24.05 

20.4 

 

The analysis shows that Llama 2 is the fastest LLM among those compared, with an average response time of 

12 seconds, despite Llama 3 being a newer and more advanced model. The other models could not achieve response 

times lower than 20 seconds.  

 

3.3. Comparison of project compilation times using different sizes of knowledge bases. 

 For certain use cases, the time required for the program to compile and launch may be a significant 

consideration. It was found that the size of the knowledge base has the most substantial impact on compilation time. 

Three knowledge base files were created, each with different sizes: 2 kilobytes (small), 65 kilobytes (medium), and 264 

kilobytes (large). The program was launched 10 times with each knowledge base, and the compilation time was 

measured. 

Table 2. Results of compilation time measurements for different sizes of knowledge bases. 

Knowledge Base Average Time (s) Median (s) 

Small (2kb) 14.813 14.395 

Medium (65kb) 

Large (264kb) 

263.9 

1118.097 

263.005 

1114.865 

The results show a strong correlation between the size of the knowledge base and the program’s compilation 

time. With the smallest knowledge base, the program launches in about 15 seconds. The medium-sized knowledge 

base (65 kb) increases this time to 264 seconds—an almost 19-fold increase in wait time for a 32-fold increase in data. 

The largest knowledge base (264 kb) results in a compilation time of 1118 seconds (18 minutes and 38 seconds), 

representing an 80-fold increase in time for 132 times more data. 
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