
 

Informatyka techniczna i sztuczna inteligencja 

Technical informatics and Artificial Intelligence 

Engineer of XXI Century’2024 

 
 

DOI: h�ps://doi.org/10.53052/9788367652292.20 

RouteYOU – app design to support outdoor achievement 

recording 

Szymon Węgliński 1, Dawid Kotrys 2 

1 student of Geoinformatics, Faculty of Geodesy and Cartography, Warsaw University of Technology,  

plac Politechniki 1, Warsaw 00-661, Poland, szymon.weglinski.stud@pw.edu.pl 
2 PhD, Department of Mathematics, Faculty of Mechanical Engineering and Computer Science,  

University of Bielsko-Biala, Willowa 1, Bielsko-Biala 43-300, Poland, dkotrys@ubb.edu.pl 

 

Abstract: The article is devoted to the process of creating a map application, whose purpose is to provide organizational support for 
the School Club of the Polish Tatra Society “Pionowy Świat” at the 5th High School in Bielsko-Biała. However, the program has been 
generalized for all types of outdoor activities where the spatial location of stops and characteristic points of the route are important. 
Additionally, the application allows for the generation of rankings of the most active users and the most visited places, with the 
option to export this data to HTML files. There is also broad potential for further development, which will allow continuous 
improvements and modifications to ensure that the provided functionalities are as accessible and useful as possible for the target 
group of users. 

Keywords: geoinformatics, python, tkinter library, tkintermapview library, desktop application, RouteYOU, outdoor activities, 
tourism, HTML; 

RouteYOU – projekt aplikacji wspierającej rejestrowanie 

osiągnięć na świeżym powietrzu 

Szymon Węgliński 1, Dawid Kotrys 2 

1 student Geoinformatyki, Wydział Geodezji i Kartografii, Politechnika Warszawska,  

plac Politechniki 1, Warszawa 00-661, Polska, szymon.weglinski.stud@pw.edu.pl 
2 doktor, Katedra Matematyki, Wydział Budowy Maszyn i Informatyki, 

Uniwersytet Bielsko-Bialski, Willowa 1, Bielsko-Biała 43-300, Polska, dkotrys@ubb.edu.pl 

 

Streszczenie: Artykuł jest poświęcony procesowi tworzenia aplikacji mapowej, której głównym celem jest wsparcie organizacyjne 
Szkolnego Koła Polskiego Towarzystwa Tatrzańskiego „Pionowy Świat” przy V Liceum Ogólnokształcącym w Bielsku-Białej. 
Program został jednak uogólniony dla wszelkich typów aktywności zewnętrznych, w których istotne jest położenie przestrzenne 
przystanków oraz punktów charakterystycznych trasy. Oprócz tego aplikacja pozwala prowadzić ranking najaktywniejszych 
użytkowników, najczęściej odwiedzanych miejsc oraz dane te eksportować do plików HTML. Istotnym jest również szerokie pole 
rozwoju, które pozwoli nieustannie ulepszać oraz modyfikować program, aby dostarczane funkcjonalności były możliwie 
najbardziej przystępne oraz przydatne dla docelowej grupy użytkowników. 

Słowa kluczowe: geoinformatyka, python, biblioteka tkinter, bibliotek tkintermapview, aplikacja komputerowa, RouteYOU, 
aktywności na świeżym powietrzu, turystyka, HTML; 

 

 



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 226 

1. Introduction 

Clive Humby once said: “Data is the new oil. It’s valuable, but if unrefined it cannot really be used”. While this statement 
applies to all data, it holds even greater significance when it comes to spatial data. This type of information 
is unquestionably valued nowadays. However, its wide research spectrum and vast range of potential applications 
require careful organization to effectively extract the data we are interested in. For this reason, created programs should 
respond to user needs, which often focus on diverse aspects and require tailored approaches. 
 
This perspective, along with the insufficient number of functions provided by commercial maps, highlighted the need 
to create an application whose primary goal is to automate the process of managing individual routes and transferring 
manually collected data to a digital medium. That is why I decided to create the foundation for a map application whose 
functionalities sufficiently accelerate the process of managing achievements and maintaining lists of the most active 
users and visited points. At the same time, since this is my first application, I implemented many simplifications during 
its development, which I plan to replace in the future with specialized tools and methods based on advanced 
geoinformation techniques, the specifics and use of which I will hopefully learn during my engineering studies. 

2. App description 

a. Programming decisions 

I began developing the application by making key programming decisions. I selected Python (version 3.12.6) as my 
language of choice. This decision was driven due to Python’s extensive use in geosciences and its rich collection 
of scientific and user interface libraries, which offer many useful functions. Another advantage of Python is its 
readability, which simplifies both writing and modifying parts of the code [1]. 
 
Given that this is my first venture into more advanced applications, I also made a design decision regarding code 
organization. I decided to program the entire application in a single file to avoid complications with file management. 
However, in the future, following current trends in application development [2], I plan to split the code into thematic 
files or even folders to improve its readability and organization. This will not only make future work easier but also 
reduce the potential failure rate of individual application components. 

b. Python libraries 

As I mentioned, Python’s strength lies in its multitude of libraries, which are generally well-documented and tested. 
The final version of my application uses the following libraries: 

• Tkinter – a standard Python library for creating graphical user interfaces (GUI). In my program I use it for 
enabling the application to respond to user requests [3], 

• datetime – handles operations involving dates and times. In this case, it calculates the difference between two 
given dates, 

• Pillow – an image processing library. In my program it is responsible for displaying PNG files associated  
with the application’s logo, 

• folium – a library for creating interactive maps. It allows spatial maps to be generated and saved as HTML files. 
• TkinterMapView – an extension of Tkinter that adds interactive map functionality directly within the 

application’s window. It also helps to display points and routes selected by the user [4], 
• geopy.distance – part of the geopy library. Used for calculating the distance between two geographic points 

based on their latitude and longitude, 
• json – provides tools for working with JSON data. This is a temporary solution for storing the application’s state, 
• os – a standard library for interacting with the operating system. It is used to manage and manipulate file paths, 
• webbrowser – allows the program to open URLs in the default web browser. In my application, this is useful for 

collecting user-submitted error reports. 

c. Logo and name 

The name of my program consists of two combined components. “Route” reflects the nature of the application and its 
connection to geopositioning, while “YOU” (wri�en in capital le�ers) emphasizes a strong focus on individual route 
personalization. 



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 227 

I placed similar emphasis on the application’s logo, which, along with the name, highlights the interdisciplinary 
potential of the application. The graphic file was created using the features provided by Canva [5]. 
 

 

Figure 1. “RouteYOU” – application logo 

3. From project to realization 

As mentioned, a graphical user interface has been created using Tkinter library. The window configuration is as follows: 
 

# Import of necessary libraries and color initialization 

 

window = tk.Tk()  # Window initialization 

window.title('RouteYOU')  # Setting the window title 

window.geometry('1200x600')  # Setting a fixed window size 

window.config(bg=lightlime, bd=0)  # Setting background color and border width 

window.resizable(False, False)  # Disabling window resizing for proper elements scaling 

 

# Application code 

window.mainloop()  # Running the Tkinter event loop 

a. Interface sections 

To improve GUI and separate the most important parts of the program, I used the canvas from the Tkinter library and 
I created a special function for lists with a scrollbar. The code is shown below: 
 

def scrollbar_listbox(root, title, width=23, height=5, fg='black', bg='white',  

                      relx=0.5, rely=0.5, anchor='center', x=0, y=0, font_th=12): 

  # Initializing and positioning a new frame within the window 

  frame = tk.Frame(root) 

  # Setting the frame’s position in the window 

  frame.place(relx=relx, rely=rely, anchor=anchor, x=x, y=y) 

 

  # Creating and adding a title label 

  list_title = tk.Label(frame, text=title, font=('Arial', font_th, 'bold'), fg=fg) 

  # Positioning the title label at the frame’s top 

  list_title.pack(side=tk.TOP, pady=5) 

 

  # Creating a listbox for displaying content 

  listbox = tk.Listbox(frame, width=width, height=height, fg=fg, bg=bg) 

  # Positioning the listbox on the frame’s left 

  listbox.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) 

 

  # Creating a vertical scrollbar linked to the listbox 

  scrollbar = tk.Scrollbar(frame, orient=tk.VERTICAL, command=listbox.yview) 

  # Positioning the scrollbar on the frame’s right 

  scrollbar.pack(side=tk.RIGHT, fill=tk.Y) 

 

  # Updating the scrollbar with the listbox scrolling 

  listbox.config(yscrollcommand=scrollbar.set) 

 

  return listbox, list_title  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 228 

The interface was enhanced with bu�ons, all of which were added based on the following scheme: 
 

button_example = tk.Button(window, text='Example', bg='color', 

                          activebackground='color', command=function, width=10, height=1) 

button_example.place(relx=1.0, rely=1.0, anchor='se', x= ±shift, y= ±shift) 

 
It is important to note that the positioning of window elements uses relative coordinates. The method for defining them 
is illustrated in Figure 2, where the rectangle represents the application window area. 
 

 

Figure 2. Interpretation of element positioning within the window 
in the Tkinter library (figure made in: AutoCAD 2023) 

The window is complemented by the previously mentioned canvas areas and a map embedded within the window 
using the TkinterMapView library. In addition, the basic route statistics are located in the lower part of the central area. 
In my program, this is represented as the code below: 
 

# RIGHT SIDE 

# Creating background on the right side 

canvas_right = tk.Canvas(window, width=180, height=600, bg=muddygreen, highlightthickness=0) 

# Attaching the background to the right side of the window 

canvas_right.place(relx=1.0, rely=0.5, anchor='e') 

# Creating a scrollbar listbox for route points 

listbox_route_points, label_route_points = scrollbar_listbox(window, 'ROUTE POINTS', 

      fg='green', relx=1.0, rely=0.5, height=15, anchor='e', x=-10, y=-10) 

# Opening the logo image 

logo = Image.open(r'C:\Users\HP\Desktop\RouteYOU\RouteYOU_logo.png') 

# Resizing the image to a fixed size 

logo = logo.resize((128, 128), Image.LANCZOS) 

# Converting the image to a format compatible with the tkinter library 

app_logo = ImageTk.PhotoImage(logo) 

# Setting the background for the logo 

app_logo_label = tk.Label(window, image=app_logo, bd=0, bg=muddygreen) 

# Attaching the logo to the correct position in the window 

app_logo_label.place(relx=1.0, rely=0.0, anchor='ne', x=-25, y=+10) 

 

# LEFT SIDE 

# Creating background on the left side 

canvas_left = tk.Canvas(window, width=180, height=600, bg=muddygreen, highlightthickness=0) 

# Attaching the background to the left side of the window 

canvas_left.place(relx=0.0, rely=0.5, anchor='w') 

# Creating scrollbar listboxes for most active users, most visited places and future 

      functionalities 

listbox_ranking, label_ranking = scrollbar_listbox(window, 'MOST ACTIVE', fg='red', height=10, 

relx=0.0, rely=0.0, anchor='nw', x=+10, y=+10) 

listbox_visited, label_visited = scrollbar_listbox(window, 'MOST VISITED', fg='darkorange', 

height=5, relx=0.0, rely=0.5, anchor='sw', x=+10, y=+35) 

listbox_, label_unnamed = scrollbar_listbox(window, '- - -', fg='darkblue', relx=0.0, rely=0.8, 

anchor='sw', x=+10, y=-20)  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 229 

# CENTER 

# Creating the background canvas for the map 

canvas_center = tk.Canvas(window, width=750, height=510, bg='grey', highlightthickness=1, 

      highlightbackground='darkgrey') 

# Attaching background to the top part of the central area 

Canvas_center.place(relx=0.5, rely=0.0, anchor='n', y=+9) 

# Creating the map widget using the tkintermapview library 

map_widget = TkinterMapView(window, width=750, height=510, corner_radius=0) 

# Attaching map to the correct position 

map_widget.place(relx=0.5, rely=0.0, anchor='n', y=+10) 

# Setting the initial map view parameters 

map_widget.set_position(49.7678810, 19.1610286)  # Coordinates of Czupel (Little Beskids) 

map_widget.set_zoom(17)  #  

# Adding an option to add an individual marker not connected to route points scrollbar 

map_widget.add_right_click_menu_command(label='New tag', command=add_marker_event, 

      pass_coords=True) 

 

# Creating a canvas for statistics 

canvas_stats = tk.Canvas(window, width=840, height=70, bg='darkgreen', highlightthickness=0) 

# Pinning to lower part of central area 

canvas_stats.place(relx=0.5, rely=1.0, anchor='s') 

# Updating statistics with implemented function for refreshing and displaying component elements 

update_statistics(distance=global_distance, duration=global_duration, speed=global_speed) 

 
TkinterMapView uses OpenStreetMap as its representation of topography and as an underlay for placing markers and 
lines. One of its key benefits is that it is free to use and easy to implement, along with straightforward options for 
customization. However, this is a temporary solution in my application due to the limited functionalities provided by 
the library. In the future, I want to utilize data from geoportal.gov.pl [6] and ArcGIS software [7][8]. In addition to using 
dedicated systems for spatial information, these tools will enable more effective statistical analysis and data modeling, 
while also improving the visual quality of the interface. 

b. Memory management 

In “RouteYOU”, memory is stored as JSON and saved when the application closes. When reopened, data from the same 
file is retrieved, and then the program recreates the last stage displayed on the user’s screen. This concept 
is implemented with two simple functions described below. 
 

# Import of necessary libraries, initialization of global variables and rest of the code 

 

def save_state(): 

  # Creating a data instance 

  state = { 

    # Saving status of the tables and last-set language 

    'people_list': people_list, 

    'visited_points': visited_points, 

    'current_language': current_language, 

    # Saving the center of displayed map as the last map position 

    'map_position': { 

      'latitude': map_widget.get_position()[0], 

      'longitude': map_widget.get_position()[1] 

    } 

  } 

  # Opening in write mode to save data to a JSON file 

  with open('app_state.json', 'w') as f: 

    json.dump(state, f, indent=4) 

 

  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 230 

def load_state(): 

  global people_list, visited_points, current_language 

  # Checking if the file exists 

  if os.path.exists('app_state.json'): 

    # Opening the file in read mode 

    with open('app_state.json', 'r') as f: 

      try: 

        # Reading the contents of the JSON file 

        state = json.load(f) 

        people_list = state.get('people_list', []) 

        visited_points = state.get('visited_points', []) 

        current_language = state.get('current_language', 'EN')  

        map_position = state.get('map_position', {'latitude': 49.767881, 'longitude': 

19.161029}) 

        # Setting the map position as the last displayed 

        map_widget.set_position(map_position['latitude'], map_position['longitude']) 

      # Handling incorrect JSON structure by setting base values for each dataset 

      except json.JSONDecodeError: 

        people_list = [] 

        visited_points = [] 

        current_language = 'EN' 

        map_widget.set_position(49.767881, 19.161029) 

  # Setting empty or base values if file is not found 

  else: 

    people_list = [] 

    visited_points = [] 

    current_language = 'EN' 

    map_widget.set_position(49.7678810, 19.1610286) 

 

  # Refreshing scrollbar listboxes and language status for correct display 

  update_people() 

  update_visited() 

  relaunch_language() 

 

# Rest of the code 

 
In the current version, I chose the JSON format because it is a lightweight data interchange format that excels in data 
serialization due to its simplicity and widespread support. Another benefit is its ease of exchange between different 
programming languages [9]. In the future, I plan to create a unique and dedicated database for my application that will 
connect components. However, for now, this solution is more than sufficient. 

c. Delivered funtionalities in window interface 

The interface was created using snippets of the code described in section a., with the final version shown in Figure 3. 
 

 

Figure 3. Interface of an application  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 231 

Now, the functions represented by bu�ons in the interface will be examined closely. However, to keep the content 
concise, I will aim to avoid including long code snippets in the descriptive sections. 

i. Language button 

Since the target audience of the application is Polish, the program supports language switching (Figure 4). To do this, 
simply press the “Polish” bu�on if the language is set to English, or “Angielski” if the language is set to Polish. 
In addition to bu�on labels, windows and messages also change displayed language. However, this is implemented 
slightly differently. The names of bu�ons and table labels are replaced using the following example function: 
 

# Rest of the code 

 

def relaunch_language(): 

  if current_language == 'PL': 

    button_language.config(text='Angielski') 

    # Rest of the buttons 

  else: 

    button_language.config(text='Polish') 

    # Rest of the buttons 

 

# Rest of the code 

 
The switching is implemented by the code below. 
 

def switch_language(): 

  global current_language  # Using global variable for language 

  if current_language == 'EN': 

    current_language = 'PL' 

  else: 

    current_language = 'EN' 

  relaunch_language() 

 
Whereas, the windows and messages are changed using simple conditional statements, which adjust the window’s title 
and content depending on the selected language. An example of this can be found below. 
 

# Needed parts of the code 

 

title = 'Warning' if current_language == 'EN' else 'Uwaga' 

message = 'Table has been cleared.' if current_language == 'EN' else 'Tabela wyczyszczona.' 

messagebox.showinfo(title, message) 

 

# Rest of the code 

 

 

Figure 4. Polish version of interface  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 232 

ii. “Add point” and “Delete point” buttons 

As the names of these bu�ons suggest, the first is used to add a new point, while the other one is used to delete the 
selected point, if it exists. The procedure for adding a point consists of three steps: 

1. Click the button 
2. Enter the name in the appropriate subwindow (if this step is skipped, the name will default to “Unnamed point”, 

with each subsequent unnamed point receiving a sequential identifier starting from 1) (Figure 5) 
3. Click on the map to place a marker with the user-provided name. 

Each new point creates a marker with a name and a polyline connecting the two most recently added points with a blue 
segment. Based on this, the Euclidean distance [10] is calculated using geopy.distance library [11]. This method 
is beneficial when adding route point for water activities, but adding on-earth trails requires a denser distribution of 
points to accurately approximate the distance travelled. Each newly added (or removed) point updates the total distance 
(Figure 6), which is stored as a global variable, along with other statistics. 
 
Deleting a point involves selecting it from the “Route Points” list and then clicking the appropriate bu�on. This action 
will remove the corresponding marker, connect the two adjacent points with a line segment, and recalculate 
the distance. It’s important to note, that if we a�empt to delete a point when only one segment (two points) remains 
on the map – both points will be deleted. 
 
The function below is responsible for calculating the distance using geodetic coordinates. 
 

# Rest of the code (with initialization of global variable for distance) 

 

def calculate_polyline_length(coords): 

  total_distance = 0 

  for i in range(len(coords) - 1): 

    total_distance += geodesic(coords[i], coords[i + 1]).kilometers 

  return total_distance 

 

# Rest of the code 

 

 

Figure 5. Subwindow for adding a new point 

 

Figure 6. Adding new points and recalculating the distance after each 



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 233 

There are plans to create a pathfinding algorithm on the map that will enable finding a route along existing paths 
between two points, making it easier to add stops on land routes. 

iii. Other buttons connected with map management 

• Set region – clicking this button opens a combo box (Figure 7) that allows the user to select a region from 
an alphabetical list. These regions are stored in a global array that holds both the name and coordinates to move 
to, as shown in the example below. This feature is designed to simplify map navigation for the user, 
and the straightforward storage format makes it easy for programmer to add new regions. 

 

# Rest of the code 

 

regions = { 

  'Tatry': (49.250954, 19.934102), 

  # (...) 

} 

 

# Rest of the code 

 

 

Figure 7. Combo box with regions 

• Reset map – the function represented by this button, allows the user to clear “Route Points” table and remove all 
marker points with polylines from the map. The deletion of points is permanent and (in the current version of 
the application) cannot be undone. 

• Satellite/Map – this button is used to change the base layer of the map. After clicking, it allows the user to switch 
between Google Maps Satellite and OpenStreetMap (Figure 8) while maintaining the current position. 
The function responsible for this part is shown below. 

 
# Initialization of global variables and rest of the code 

 

def toggle_map(): 

  global current_server  # Global variable for storing current base layer 

  if current_server == 'OpenStreetMap':  # Switching to Satellite if Map 

    map_widget.set_tile_server('https://mt0.google.com/vt/lyrs=s&hl=en&x={x}&y={y}&z={z}&s=Ga', 

                                max_zoom=19) 

    current_server = 'Google Satellite' 

    if current_language == 'EN':  # Language management 

      button_toggle_map.config(text='Map') 

    else: 

      button_toggle_map.config(text='Mapa') 

  else:  # Switching to Map if Satellite 

    map_widget.set_tile_server('https://a.tile.openstreetmap.org/{z}/{x}/{y}.png') 

    current_server = 'OpenStreetMap' 

    if current_language == 'EN':  # Language management 

      button_toggle_map.config(text='Satellite') 

    else: 

      button_toggle_map.config(text='Satelita') 

 

# Rest of the code 

  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 234 

 

Figure 8. Interface with changed underlay (region: Campus of the University of Bielsko-Biala) 

• Save map – this button allows user to save map, including markers and polylines, to HTML file in a user-chosen 
location with a user-chosen name. If current view is set to satellite, the button will save the map in its default 
(non-satellite) view instead. 

• Database – in the current version of the program, this button only displays a simple message and is not connected 
to any useful functionalities. Future plans include the previously mentioned program database, which will allow 
for the analysis and storage of application data and modified map in one place. 

iv. Operations on statistics 

Currently, the statistics are quite basic, focused on building concept that will be expanded in future, more advanced 
versions. At present, the application calculates the distance of the added route (section ii. of this article) and allows the 
user to set the trip duration by pressing the “Set duration” bu�on and filling in the required fields in a new subwindow 
(Figure 9). If incorrect data is entered, the code detects it and displays a message indicating that the date or time input 
is incorrect. If the provided data is valid, the statistics will be updated with the new duration and average speed 
(if a distance is set; otherwise, this part will remain at 0.00 km/h). 
 

 

Figure 9. Interface with “Time duration” subwindow 

The “Export stats” bu�on allows the user to download all statistics as simple HTML file. After clicking it, the code 
shown below is saved to the file specified by the user, and the result of opening the file in a browser window is shown 
in Figure 10. A subwindow confirms the successful saving and shows a path to the file. 
  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 235 

<html> 

  <head> 

      <title>Statistics</title> 

  </head> 

  <body> 

    <h1>{main_label}</h1> 

    <p><strong>{distance_label}</strong> {global_distance:.1f} km</p> 

    <p><strong>{duration_label}</strong> {global_duration}</p> 

    <p><strong>{average_speed_label}</strong> {global_speed:.2f} km/h</p> 

  </body> 

</html> 

 
where: main_label, distance_label, duration_label and average_speed_label store different content based on the current 
language set in the window at the moment the bu�on is clicked. 
 

 

Figure 10. Content of HTML file with statistics 

v. Scrollbar listbox: “Most active” table management 

The “Most active” table is designed to store and rank the most active people, highlighting those who go out frequently. 
In the current version of the program, these individuals are not yet linked to the route, but in future, with the addition 
of a database, I plan to integrate these components of the application. For now, the table’s operation is managed 
using 4 bu�ons (in red, like the scrollbar listbox title). The table can be modified using: 

• “Add person” button – initially, after pressing this button, the subwindow “Person” (Figure 11) opened. Then, 
the user could input the full name in two separated fields (First and last name). However, after consulting this 
functionality with the first user of the “RouteYOU” application – Sebastian Kulinski PhD (supervisor of SK PTT 
“Pionowy Świat”) – this concept was changed due to the tedious process of adding multiple people from one 
trip. The updated version first asks for the number of people and then opens exactly that many windows one 
after the other. This particularly solved faced difficulty, but in the future, I will add the possibility to import data 
from a file (if list of the users will be available as computer version). 

 

 

Figure 11. Subwindow for adding people to “Most active” listbox 

• “Undo person” button – allows the user to remove a specified number from the selected record (Figure 12). If the 
number is greater than what the person currently has, that row will be removed from the table. This button 
is useful for correcting trips that were unintentionally added to a person.  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 236 

 

Figure 12. Removing trials from person 

• “Reset people” button – removes all records from the listbox. This operation requires confirmation to make the 
user aware that it might destroy important data and affect many rows. It is useful, for example, when we want 
to create a new ranking at the start of a semester. 

• “Export HTML” button – works similarly to the “Export stats” button (section iv. of this article). It creates 
a portion of HTML code that is saved in a user-specified file. After opening (Figure 13), a table will be displayed 
in which top three positions will be highlighted with the appropriate colors. This function works perfectly with 
the previous button, as we can export the table before resetting it and store it for future use. 

 

 

Figure 13. Exported “Most active” table (filled with random data) 

vi. Scrollbar listbox: “Most visited” table management 

In addition to the table collecting the most active individuals, the program also supports the ranking of the most 
frequently visited places (with bu�ons and table title in orange color). The operation scheme is quite similar to the 
“Most active” table, but there is no bu�on to clear the entire table, as we generally want to keep the places we visit 
for as long as possible. However, if there is a need to add such a function, the ability to reset the table will 
be implemented in future versions. The listbox is managed in the interface through bu�ons: 

• “Add visited” button – when clicked, adds the selected point from the “Route Points” table to the “Most visited” 
table or increments the existing row with the same name by 1, 

• “Decrement” button – when clicked, decrements the selected record in the “Most visited” table by 1. 
 
As before, there is also button “Export HTML” which allows exporting this data to an HTML file. The procedure is 
identical to that of the previous buttons of this type. The result of the operation associated with this button is shown 
in Figure 14. It is important to note that the first three ranking positions are not highlighted.  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 237 

 

Figure 14. Exported “Most visited” table (filled with random data) 

vii. Handling user-experienced bugs 

The application interface is complemented by an “Report error” bu�on. When clicked, it opens the default email client 
with a pre-filled recipient address and subject. To complete the report, the user needs to enter the message content and 
send the email. This feature is implemented using the webbrowser [12] library, as shown in the code below. 
 

# Rest of the code 

 

def report_bug(): 

  email_address = 'szweglinski@gmail.com'  # Contact address 

  if current_language == 'EN':  # Language management 

    subject = 'Bug Report' 

    body = 'Please describe the bug you encountered here.' 

  else:  

    subject = 'Zgłoszenie o błędzie' 

    body = 'Opisz błąd, którego doświadczyłeś podczas korzystania z aplikacji' 

  mailto_link = f'mailto:{email_address}?subject={subject}&body={body}'  # Creating link 

  webbrowser.open(mailto_link) 

 

# Rest of the code 

 

 

Figure 15. Screenshot of the Outlook inbox 

4. Conclusions 

The “RouteYOU” application will now be used by the Mountain Club at the 5th High School in Bielsko-Biala. However, 
it is perfect for all types of outdoor activities, on land (running, hiking), on water (kayaking, sailing) and in the air 
(paragliding). A key feature here is the route length calculation. For now, with particularly winding routes, there 
is a need to place points more frequently to achieve more accurate distance measurements. My further research will 
focus on improving this functionality by introducing a “route-finding” algorithm that connects two points, not with 
a straight line, but by simplifying the original trail shape. I also aim to make this algorithm interdisciplinary, because 
in the future I plan to replace OpenStreetMap with a more sophisticated detailed map, especially for trails. 
 
A key component of the next versions of “RouteYOU” will be the integration of its own spatial database, allowing map-
related a�ributes to be combined with user data. In the long term, I plan to create a mobile app closely linked to 
the desktop application. My goal is to use phone location data to enhance the process of adding new trails. With user 
consent, it will be possible to collect positioning data and transfer it in compact, user-friendly packages. After calculating 
and processing in the database, this data will be accessible on both devices.  



Szymon Węgliński, Dawid Kotrys / RouteYOU – app design to support outdoor achievement recording 
 

 DOI: h�ps://doi.org/10.53052/9788367652292.20 238 

Another area of development is the ongoing improvement and modernization of the application’s front-end, focused 
on enhancing clarity and visual quality. Among the many user-experience upgrades I have in mind, the most interesting 
and challenging one will definitely be the introduction of 3D route models, allowing users to not only view their tracks 
from different angles, but also to display statistics and route details. This feature will also be a major focus of my future 
research. In my head, there are also plans for changing the input for the date, from simple but tedious adding parameters 
to opening two li�le calendars with clocks to set the time limits. I am convinced that this small change might really 
improve the experience of using “RouteYOU” application and will decrease the possibility of making mistakes in the 
process. Additionally, a usability enhancement will be the ability to import data from a file, particularly useful for 
adding lists of people associated with specific trails, making the process faster and more efficient for the user. 
 
But for now, the most important goal – creating a complex but functional interface that helps in collecting statistics – 
has been successfully achieved. At the same time, I am pleased that this application remains open to further 
modifications, including a complete overhaul of the interface and environment. All critical user data, such as map routes 
or tables with statistics can be exported to an HTML file from which this data can be easily retrieved. Looking ahead, 
I hope that next year will be focused on developing and extending existing and new functionalities. 

REFERENCES 

1. Rashed G., Ahsan R.: Python in Computational Science: Applications and Possibilities. International Journal of 
Computer Applications (0975 – 8887). Volume 43 – No.20. May 2012. pp. 26-30 

2. Spli�ing Python Source Code Into Multiple. Available online: h4ps://dnmtechs.com/spli4ing-python-source-code-into-

multiple-files (accessed on 03.10.2024) 
3. Graphical User Interfaces with Tk. Available online: h4ps://docs.python.org/3/library/tk.html (accessed on 05.10.2024) 
4. TkinterMapView. Available online: h4ps://github.com/TomSchimansky/TkinterMapView (accessed on 05.10.2024) 
5. Canva. Available online: h4ps://www.canva.com (accessed on 03.10.2024) 
6. Geoportal. Available online: h4ps://www.geoportal.gov.pl/en (accessed on 05.10.2024) 
7. Österman A.: Map visualization in ArcGIS, QGIS and MapInfo. KTH Royal Institute of Technology. Stockholm. 2014. 

Available online: h4ps://kth.diva-portal.org/smash/get/diva2:729183/FULLTEXT01.pdf (accessed on 05.10.2024) 
8. ArcGIS. Available online: h4ps://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 05.10.2024) 
9. Python: Saving Objects Using JSON. Available online: h4ps://medium.com/@sarperismetmakas/python-saving-objects-

using-json-1b93370f7fa9 (accessed on 05.10.2024) 
10. Euclidean distance. Available online: h4ps://en.wikipedia.org/wiki/Euclidean_distance (accessed on 05.10.2024) 
11. GeoPy: Calculating distance. Available online: h4ps://geopy.readthedocs.io/en/stable/index.html#module-geopy.distance 

(accessed on 05.10.2024) 
12. Webbrowser library. Available online: h4ps://docs.python.org/3/library/webbrowser.html (accessed on 06.10.2024) 


