

Łukasz CZEPIELIK1, Konrad BOROŃ1, Dominik PEZDA1

Opiekun naukowy: Stanisław ZAWIŚLAK2

THE PROBLEM OF GRAPH TRIPARTITION
IN A TWO-CRITERIA EVOLUTIONARY APPROACH

Summary: The article discusses the problem of the tripartition (tripartite division)

of a randomly generated, undirected graph using an evolutionary algorithm. The designed

genetic algorithm is based on a two-criteria function of adaptation of population members.

To solve that issue a dedicated computer program has been prepared, which allows investigating

the behaviour of the algorithm for different sets of input data. The work cycle of the created

research application is based on the following steps: defining the input parameters, individual

iterations of the designed source code (genetic algorithm) solving the problem, visualization of

partial results, evaluation and registration of the obtained final results.

Keywords: non-directional graph, graph partitioning, tripartition, evolutionary approach,

multi-criteria optimization, genetic algorithm, pareto front, searching for extremum

PROBLEM TRÓJPODZIAŁU GRAFU
W DWUKRYTERIALNYM UJĘCIU EWOLUCYJNYM

Streszczenie: W artykule został omówiony problem trójpodziału losowo generowanego,

nieskierowanego grafu przy wykorzystaniu algorytmu ewolucyjnego. Zaprojektowany

algorytm genetyczny został oparty na dwukryterialnej funkcji przystosowania osobników danej

populacji. Do rozwiązania omawianego problemu został przygotowany dedykowany program

komputerowy, który pozwala na badanie zachowania algorytmu dla różnych zestawów danych

wejściowych. Cykl pracy utworzonego nośnika badawczego oparty jest na następujących

krokach: zdefiniowanie parametrów wejściowych, poszczególne iteracje zaprojektowanego

kodu źródłowego (algorytmu genetycznego) rozwiązującego badany problem, wizualizacja

wyników cząstkowych, ewaluacja oraz zapis osiągniętych wyników.

Słowa kluczowe: nieskierowany graf, podział grafu, trójpodział, podejście ewolucyjne,

optymalizacja wielokryterialna, algorytm genetyczny, zbiór kompromisów Pareto,

poszukiwanie ekstremum

1 University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science,

Computer Science, Software Development Techniques, email l.czepielik@gmail.com,

konradmb@o2.pl, dominik.pezda96@gmail.com;
2 dr hab. inż., prof. ATH, University of Bielsko-Biala, Faculty of Mechanical Engineering and

Computer Science, email szawislak@ath.bielsko.pl;

64 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

1. Introduction

The aim of the project is to create a program that will allow to solve the problem

of graph tripartition in a two-criteria approach using an evolutionary algorithm. The

graph tripartition problem is one of the typical graph theory issues and operations that

are associated with them.

The problem of graph tripartition is to assign each vertex of a considered graph to

one of three available groups [3]. In case of developed application the described graph

problem will be examined from a two-criteria aspect, which means that the task will

be related to the topic of multi-criteria optimization. The objective that the algorithm

should be able to perform a double minimum task, i.e. searching for a minimum of

both defined criteria simultaneously. The first optimization criterion is the total

number of edges in the graph, which connect vertices that do not belong to the same

group, while the second criterion of the minimization problem is the total sum of

weights of this type of edge.

The presented definition of the multi-criteria optimization task communicate that

the result of the solution could not be just one point, which can be classified as the

best point, or the closest to ideal point, without taking into consideration the

limitations. However in some cases such solution could be obtain. The result of the

two-criteria optimization of the graph tripartition problem will be the Pareto

compromise set. This set of compromises contains solutions that can be called

optimal, but from the group of which it is not possible to select a point that would be

ideal in terms of all analyzed criteria. Each of the problem solutions that are on the

Pareto front (the set of compromises) are optimal according to some criteria and are

not optimal for others. In order to select the point which is the expected point

of settling the task, one of the methods of arbitrary weighting of particular criteria

should be used. In the case of a graph tripartition problem, the dominant criterion is

the total sum of the weights of the edges between two vertices that do not belong to

the same group, and it is this criterion that is used to finally determine the one closest

to the ideal solution [1].

The discussed problem of graph tripartition with searching for a minimum based

on two criteria must in some way be tested repeatedly using different configurations

of vertex assignments to groups. In order to make a comprehensive analysis, an

evolutionary algorithm will be adopted, which will let to search the available solutions

to the problem in a very structured way. The genetic algorithm allows to reproduce

the processes of evolution of living beings such as mutation, crossover and selection

in a strictly simulated test environment which is naturally the application

environment. Moreover the classical algorithms are formulated for a single criterion

therefore their generalization is difficult and requires a new proof of correctness.

Thanks to the use of a genetic algorithm, a well-functioning mechanism will be

implemented, which should allow for an in-depth search for a solution to the problem.

A great advantage of using evolutionary algorithms is the possibility to improve the

results obtained with numerous algorithm iterations [3].

Due to the specificity of the created program, which requires interaction from the

user, its work cycle can be divided into three main parts. In the first, preparatory stage,

the user using the application adjusts the parameters used by internal procedures. The

user enters data related to the graph to be generated and completes the properties

which characterize the evolutionary algorithm. An important parameter entered by the

 The problem of graph tripartition In a two-criteria evolutionary approach 65

user is the boundary number of iterations for the genetic algorithm (so called ‘stop

condition’). In practice, the algorithm always performs the given number of iterations.

In the next step, when the appropriate button is pressed, the graph generation

procedure is started randomly based on the settings entered. The finished graph is

shown on the user interface as a matrix of incidents and weights,

and also in an interactive visual form [6].

In the second stage of application work, the user initiates the execution of the

genetic algorithm by pressing the appropriate button. The genetic algorithm performs

each of the iterations one by one. The interruptions in execution of particular iterations

are intended to provide a better possibility for the end user to observe the work of the

algorithm and the effects of its work achieved in subsequent iterations. Time for which

the execution of the algorithm is stopped can be changed via the appropriate field

in the user interface. During this break from performing subsequent iterations of the

genetic algorithm, the following sections of the graphical layer of the program

window are refreshed: interactive visualization of the graph tripartition of the best

individuals from the current iteration, Pareto compromise set together with the

selected best individual as a point on the chart, minimum fluctuation charts and

average value of the adaptation function in the domain of iteration [9].

In the last stage of the application work, which starts from the termination of the

genetic algorithm at the level of border iteration, whose number was previously

entered by the user, a presentation of the final results obtained is made for the problem

of graph tripartition in a two-criteria evolutionary perspective. At this point, the user

can decide to save the application history to a text file in the .txt extension for

a particular scenario that has just been performed. After selecting the appropriate

button, all the most important data about the graph under consideration

and the individuals created, together with their adaptation ratings and solutions

in the iterations will be saved to a new text file.

2. Block Figure of program operation and genetic algorithm

The evolutionary algorithm created to solve the problem of graph tripartition in a two-

criteria approach contains operations typical for genetic algorithms. In the analyzed

problem of a single individual, it is not possible (and not needed) to describe a set of

attributes in the form of binary notation, so typical genetic operators do not apply here

[10]. The individual in the created evolutionary algorithm is a graph tripartition, i.e.

assigning graph vertices to equal (usually but not always) sets. Due to the different

representation within the source code of a single individual, particular operators

required adequate transformations in the implementation. Figure 1 shows a block

diagram of the designed application, while the Figure 2 shows a schematic diagram

of the operation of the genetic algorithm together with the selected successive

component operations [2].

66 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

Figure 1. Block scheme of the prepared computer program

 The problem of graph tripartition In a two-criteria evolutionary approach 67

Figure 2. Block scheme of the genetic algorithm

3. USE-CASE diagram of the UML standard

In Figure 3, a UML Use-Case diagram is shown, which presents

the executable actions available to the user of the designed application.

Figure 3. USE-CASE UML diagram

68 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

4. Genetic operators

In the designed genetic algorithm, the tournament selection method was used to solve

the problem of graph tripartition. After calculating the adaptation function for each of

the individuals in a given iteration, the pairing of individuals is made. The next step

is to remove an individual from the population from the pair, which has a lower value

of the adaptation function. At the tournament selection operation, we receive

a population reduced by half, which will be supplemented by new, randomly

generated individuals at the beginning of the next iteration. A fragment of the

tournament selection code is shown in Figure 4.

Figure 4. Tournament selection

The mutation operation in the implemented evolutionary algorithm relies on selection

the individual (the single chromosome) and then randomly determining the vertex

number. Due to the fact, that the mutation should - by definition - introduce a slight

modification in the individuals subjected to this procedure, therefore in this case, on

the basis of a randomly selected vertex, the group to which the vertex was originally

 The problem of graph tripartition In a two-criteria evolutionary approach 69

assigned is converted. For the reason of the usefulness of the solution, we assume that

the vertex must change its assignment to the group (after the mutation operation, it

cannot be in the same group as before the procedure). Fragment of the mutation

procedure code has been placed in Figure 5.

Figure 5. Mutation operation

The crossover (crossing) operation that was created for the essence of the problem

of graph tripartition depends on selecting a pair of individuals, and then choosing

a random vertex based on which the group of origin pair of individuals will be

replaced [7]. In order to achieve the desired result, on the basis of the drawn vertices,

two descendants are created, which are copies of their parents with the difference that

they are assigned to a group of a specific selected vertex, not to their ancestors,

and to the other individual forming a couple with a particular parent [10]. Figure 6

shows a listing of the source code fragment containing the crossing operation.

70 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

Figure 6. Crossover operation

The listing section of the program containing one of the components

of the adaptation factor calculation is shown in Figure 7.

Figure 7. Calculation of fitness function

In relation to the formulation of the problem of graph tripartition in the two-criteria

evolutionary approach, the function of evaluating the adaptation of an individual

should be designed on the basis of the criterion of the number of edges connecting

vertices belonging to different groups and the criterion of the sum of weights of this

type of edges [10].

The following function was proposed on the basis of these two criteria [10]:

���� � ����	� ∗ ���	�
�

���

 The problem of graph tripartition In a two-criteria evolutionary approach 71

where:

� - individual (chromosome),

�� - edges connecting vertices not belonging to the same group,

�� - the weights of the edges belonging to the set ��,

� - volume of set ��.

To convert the considered problem to the more simple case.

5. Development environment

The program for solving the problem of two-criteria graph tripartition problem

is made with the use of C# language in .NET Framework technology, which is

responsible for the entire logic module and using WPF technology for user-friendly

and intuitive work with the program via the user interface. In order to define the

interpreted problem we used the environment Visual Studio 2019 Enterprise

and a remote repository to synchronize the software between different platforms

during its development.

6. User interface

The end-user interface is divided into three sections, where each section corresponds

to the next steps to be taken in order to solve the problem of the two-criteria graph

tripartition. The sections of the application listed cover issues:

- the input of data necessary to perform the genetic algorithm based on a randomly

generated graph,

- visualization of a base-generated random graph in the form of a matrix

and the graphical structure,

- visualization of the genetic algorithm and its results in each of the iterations.

The first section of the user interface is the configuration panel of the graph tripartition

problem in a two-criteria approach. The whole panel is shown in Figure 8. Figure 9

shows all designed sections of the user interface connected in one program window.

Figure 8 – Graph tripartition problem factors configuration panel.

72 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

Figure 9. Application user interface.

The panel shown in Figure 9 can be divided into three sections each of which

is responsible for a different aspect of solving the graph tripartition problem.

The first of the fragments is the area of determining the characteristics describing the

randomly generated graph and the way it is presented. The coefficients

that we can determine are:

- number of vertices (it does not have to be a number divided by the number

of generated sets (3)),

- the probability of creating an edge between two vertices,

- the range of allowed values of randomly drawn weights for the edge of the graph,

- graphical presentation methods.

The described fragment of the panel, apart from the possibility of entering

configuration data, also allows to start the graph generation procedure

and its visualization by pressing the "Generate graph" button. A fragment of the panel

is shown in Figure 10.

Another panel, which is a part of the generally named configuration section

of the graph tripartition problem is the part that determines the behavior

of the genetic algorithm. This part includes the following information:

- the probability of an individual mutation operation,

- the probability of an individual being crossed,

- population size,

- the time between iterations (used to pause the algorithm to observe changes

in subsequent iterations).

This panel for entering configuration data is shown in Figure 11.

 The problem of graph tripartition In a two-criteria evolutionary approach 73

Figure 10. Configuration panel for graph

generation process and its presentation

Figure 11. Genetic algorithm

parameters configuration panel

The last part of the user interface which is part of the input section is the part

controlling the genetic algorithm, where information on the limit number of iterations

must be entered. In addition, this section stores a counter which indicates in which

iteration of the genetic algorithm the graph being processed is currently located. This

section contains the following control buttons, which close the control of procedures

sequentially called up within a running application:

- “Start” — launches the genetic algorithm responsible for solving the two-criteria

graph division problem,

- “Reset” — resets the application window with all entered/received data. Default data

is entered into configuration fields,

- “Save to file” — It allows to capture the genetic algorithm and its results into a .txt

file.

The control section of the part of the user interface responsible for configuration

of the graph tripartition problem is shown in Figure 12.

Figure 12. Section which controls the graph tripartition problem solving

Another large section of the user interface are the panels responsible for presenting

a randomly generated graph, which in the future will become the basis

for the analysis of the graph tripartition problem. The first of the panels included

in this section is a panel that stores an incident matrix and a weight matrix

of the created graph object. Representation of the graph in the form of an array

is one of the most basic and at the same time easy-to-read forms of saving the graph

structure. Incident and weighting matrices have been included in Figure 13.

The second of the offered forms of the visualization of the basically generated graph

is its structure in graphic form. Figure 14 shows a graph that can be freely moved

by manipulating individual vertices or the whole object. Additionally, it is possible to

change the scale of the observed structure, and there is also a handy panel at your

disposal when you hover the cursor over the selected edge. The handy panel contains

information about vertex numbers that are connected by a specific edge. The user can

also check the weight of such connection.

74 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

Figure 13. Incident matrix

and randomly generated graph

weights

Figure 14. Panel displaying the base-

generated graph in graphic form

The last section into which the whole user interface is divided are the panels

responsible for presenting the progress related to the genetic algorithm being

performed. This section includes the following objects:

- an indicator of the progress of the genetic algorithm,

- visualization of the best individual from the population (in a given iteration)

in the form of a graphical representation of the graph tripartition,

- a table of details of the best individual in a given iteration containing a detailed

clustering of vertices into appropriate groups,

- minimum value fluctuation graphs and average value of the adaptation function

in individual iterations of the genetic algorithm,

- chart of the Pareto compromise set together with the best individual in a given

iteration, which this time is presented as a point in two-dimensional space.

It should be noted that all elements of the user interface section currently under

discussion are refreshed every iteration of the genetic algorithm and contain transient

values which may or may not be temporary, occurring only during one iteration of the

genetic algorithm. The first object discussed in this part of the user panel is an

indicator to inform about the progress of the genetic algorithm. The indicator has

a purely informative role and provides information on how many of the planned

iterations of the genetic algorithm have already been performed. An example of

a progress indicator is shown in Figure 15.

Figure 15. Progress indicator of the genetic algorithm being performed

The next panel that is refreshed every iteration is a panel visualizing the graph

tripartition for the best individual in the iteration. Individual edges connecting two

vertices from the same group are marked with separate colours. Colours of groups are

red, green and blue. The edges that connect two vertices belonging to different groups

are shown in grey. The aim of our genetic algorithm is to minimize the number of

such edges, thus obtaining the smallest possible sum of their weights. Figure 16 shows

 The problem of graph tripartition In a two-criteria evolutionary approach 75

a panel visualizing the graph tripartition for the best individual from a given iteration

of the evolutionary algorithm. Additionally, from the level of this panel it is possible

to call up a window containing detailed assignment of vertices to particular groups

(shown in Figure 17) by pressing anywhere on the hierarchy of vertices placed below

the graph.

Figure 16. Visualization of the

tripartition of the best individual

Figure 17. Window for assigning

individual vertices to specific groups of the

graph tripartition

The next panel contained in the described section of data updated every iteration

of the evolutionary algorithm are the minimum fluctuation and average value

of the adaptation function of individuals (fitness) charts over all previous iterations.

With the help of these diagrams, it is easy to see the trend of changes and to capture

the iterations that have brought about a noticeable improvement in solving

the problem of the two-criteria graph tripartition in genetic approach. The charts are

shown in Figure 18.

The last, but one of the most important elements of the discussed section of the user

interface panel of the created application is the Pareto compromise set graph, which

is refreshed every iteration of the genetic algorithm. Additionally, under the graph

there are separated coordinates on a two-dimensional surface that define the best

individual in a given iteration. On the horizontal axis X of the Pareto diagram there is

a criterion of the number of edges that connect vertices assigned to separate groups of

the graph's tripartition (these are intersections between groups), while the vertical axis

Y is responsible for the criterion of the sum of weights of edges connecting elements

from two different sets of tripartition. Pareto front is shown in Figure 19.

Figure 18. Charts of changes in the value

of the adaptation function over the

iteration space

Figure 19. Graphic representation

of Pareto Front

76 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

7. Generated output file

In the case where a user of an application solving a two-criteria graph tripartition

problem would like to save the results obtained in particular iterations of the genetic

algorithm, the functionality of generating an output file in .txt format may be useful.

This document allows you to record all the most important information resulting from

the evolutionary algorithm.

The structure of the generated file contains the following elements:

- date of the document generation,

- the authors of the applications and the scientific unit which associates them,

- data of the base-generated graph,

- graph tripartition data of each individual from a given iteration together with

the calculated adaptation function and the best individual selected. An example of the

generated result file is shown in Figure 20.

Figure 20. An example of a generated result file

8. Analysis of the operation of the programme

In order to start solving the problem of the two-criteria graph tripartition

in an evolutionary approach, first the parameters for the procedure of generating

a random, basic output graph must be defined. Additionally, the settings

for the genetic algorithm must be adjusted, the graphical presentation procedure must

be selected, and the stop condition of the algorithm must be defined in the form of the

number of iterations the algorithm must perform. In the test scenario, which will be

used to present the way the application is run and the correct interpretation of the

results returned by the application, the following parameters determining the

randomly generated graph and evolutionary algorithm coefficients will be used, which

are presented in Figure 21.

 The problem of graph tripartition In a two-criteria evolutionary approach 77

Figure 21. Application work rates for the test scenario

After setting all the necessary parameters (changing the default settings), you can

proceed to generate the base graph by pressing the “Generate graph” button once.

After this operation, the panel presenting incident matrices and weights, as well as the

panel storing an interactive visual version of the drawn graph will be filled

with relevant data. At this stage, all the application control factors have been defined,

and also a randomly generated graph was created and presented in two forms. The

individual incident matrices and weights for the test scenario can be analysed

in Figure 22, while the presentation of the basically generated graph is shown

in Figure 23.

Figure 22. Incident and weights matrix for the test scenario

Figure 23. Base generated random graph presented in graphic - interactive form

78 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

After all the above steps have been taken, you can proceed to run the appropriate

evolutionary algorithm, solving the problem of the graph tripartition

in two-criteria approach. This operation is done by pressing the button marked

on the user panel as “Start”. In the next steps you should observe the changes that take

place in subsequent iterations. During breaks between successive iterations

of evolutionary algorithm panels will be refreshed:

- visualization in the form of interactive graph tripartition for the best individual from

a given iteration,

- a window containing a detailed distribution of the assignment of individual vertices

of the base-generated graph to groups defined within the tripartition,

- minimum value fluctuation charts and the average function of adaptation

of individuals (fitness) over successive iterations,

- graphs of the Pareto compromise set with an annotation of the coordinates

(two criteria - the number of edges connecting vertices from two different groups and

the sum of their weights) for the best adapted individual in a given iteration.

Once the execution of the genetic algorithm for the test scenario has been completed

in the next step, a review can be made of how the mean and minimum (corresponding

to the best individual in the iteration) of the adaptation function changed through all

the iterations that have been done. These data are contained in the fluctuation charts

in Figure 24.

Figure 24. Fluctuation charts of adaptation function values over the iteration area -

minimum value (best individual) and average

By performing a thorough analysis of the graphs from Figure 24, it can be seen

that the value of the obtained solution to the graph tripartition problem

in two-criteria terms using a genetic algorithm, it was systematically improved

by finding in subsequent iterations an increasingly better individual (better adapted)

from individuals in previous generations of the evolutionary algorithm.

The observed fact proves that the implemented algorithm works correctly.

The whole application window in the first and last iteration of the genetic algorithm

together with all the component panels that were successively analysed in the test

scenario are shown in Figures 25 and 26.

 The problem of graph tripartition In a two-criteria evolutionary approach 79

Figure 25. Full application window - first iteration of the test scenario

Figure 26. Full application window - last iteration of the test scenario

After the program is finished, you can take a closer look at the last population

of the genetic algorithm, which is presented in the Pareto Front graph,

which is shown in Figure 27.

80 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

Figure 27. Pareto Front chart with marked best individuals

After a more detailed analysis of the chart presenting the evaluation

of the adaptation of individuals, it can be seen that there are two points on the Pareto

Front that represent the individuals in the population that are best adapted.

For a better explanation, the individuals on the Pareto Front have been replaced

with "X" and "Y" signs. The algorithm has indicated the best adapted individual

for both criteria, that is, the X individual, but the Y individual is better adapted

for the criterion of the number of edges. In order to better illustrate the dominance

of X and Y in relation to other individuals in the current population, the cones

of dominance can be plotted on the graph. These cones of domination are shown

in Figure 28.

Figure 28. Pareto Front chart with marked dominance cones

After proper determination of the cones of domination for the points that are

on the Pareto Front, it is possible to obtain exact information which individuals

 The problem of graph tripartition In a two-criteria evolutionary approach 81

from the population are dominated by specific points from the Pareto Front

in regards to a specific criterion. According to the information contained in Figure 28

individual X dominates all the remaining in terms of the criterion of the sum of edge

weights, while individual Y dominates all the remaining in terms of the number

of edges. In such a situation the algorithm must have properly implemented

mechanisms that will indicate which criterion is more important to select the best

individual, or must use some arbitrary selection methodology. In the observed

example, the sum of edge weights was considered as the leading criterion,

so that the individual X was selected as the best adapted from the whole population.

9. Final remarks

The described programme was created as part of the “Graphs and networks

in computer science” classes. The designed solution allows to effectively solve

the problem of the tripartition of the graph in a two-criteria approach using

a genetic algorithm. Due to the possibility of tuning the parameters determining

the behaviour of the algorithm and due to the possibility of accurate observation

of the processes of solving the problem of tripartition, the presented program can be

a didactic basis for the above mentioned student classes. The discussed issues come

from the area of mathematics, programming and graph theory.

REFERENCES

1. DEB K. Multi-objective optimization using evolutionary algorithms, John Wiley

& Sons, Chichester, New York, 2001.

2. MICHALEWICZ Z. Genetic algorithms + data structures = evolution programs

Springer–Verlag , Berlin, 1992.HODLER A.: Graph Algorithms, O’Reilly Media

Inc., USA, 2019.

3. ARABAS J. Wykłady z algorytmów ewolucyjnych, WN-T, Warszawa, 2001.

4. ŻURADA J., BARSKI M., JEDRUCH W. Sztuczne sieci neuronowe, PWN,

Warszawa, 1996.

5. WOJCIECHOWSKI J., PIEŃKOSZ K. Grafy i Sieci, PWN, Warszawa, 2013.

6. WILSON R. Introduction to Graph Theory, Prentice Hall, 2010.

7. HODLER A. Graph Algorithms, O’Reilly Media Inc., USA, 2019.

8. WEST D.B. Introduction to graph theory, Pearson, 2000, Prentice Hall of India,

2007.

9. WOJNAROWSKI J., ZAWIŚLAK S. Evolutionary Algorithm for graph

partitioning (in Polish) in the book ”Polioptymalizacja i Komputerowe

Wspomaganie Projektowania”, Editors: W. Tarnowski, T. Kiczkowiak, WN-T,

Warsaw 2002.

10. ZAWIŚLAK S., PAGACZ A. EA for Graph Theory Problems: Review of Data

Structures and Operators, Workshop on Graphs, Krynica, 2003.

82 Łukasz CZEPIELIK, Konrad BOROŃ, Dominik PEZDA

11. WOJNAROWSKI J., ZAWIŚLAK S., KOZIK S., & FREJ G. (2003).

K-partitioning of graph by means of evolutionary algorithm. Badania Operacyjne

i Decyzje, (3), 91-107.

12. ZAWIŚLAK S., & FREJ G. (2003). An influence of parameters of the

evolutionary algorithm applied for the graph k-partitioning problem. Studia

Informatica, 24(4), 165-187.

