

Olha KOROL1, Alla HAVRYLOVA2

Supervisor: Serhii YEVSEIEV3

PRAKTYCZNE ALGORYTMY UMAC Z WYKORZYSTANIEM

KRYPTO-KODÓW

Streszczenie: W artykule przeprowadzono rozważania o zakresie użytkowania ulepszonego

algorytmu UMAC w kryptografii postkwantowej. Rozważany algorytm oparty o formowanie

podłoża (substrate) na trzeciej warstwie generowania kodu haszowania za pomocą systemu

‘McElise crypto-code’ (systemu krypto-kodowania) opartego na kodach eliptycznych.

W artykule omawiany jest praktyczny algorytm generowania kodów typu „hash” (hash-kodów)

z zastosowaniem kaskadowego hash-kodu UMAC, gdzie dodatkowo zastosowano krypto-kod

McElise opartego na kodach eliptycznych. Zastosowanie krypto-kodów umożliwia zachowanie

uniwersalności hash-kodu na wyjściu algorytmu, a to z kolei, umożliwia zastosowanie tego

podejścia w wielkich bazach danych jako identyfikatora. Dodatkowo, biorąc pod uwagę

zastosowanie wielkoskalowych komputerów kwantowych, eksperci organizacji US NIST

uważają systemy krypto-kodów jako jedne z najbardziej efektywnych postkwantowych

algorytmów kryptograficznych. Takie ujęcia metod kodowania umożliwia wprowadzenie

modyfikowanego UMAC do różnorodnych modyfikacji struktur krypto-kodów oraz zapewnia

autentyfikację profilów o różnej ważności (sile) oraz długości.

Słowa kluczowe: algorytm haszowania UMAC, budowa krypto-kodów McElice, kody
eliptyczne

PRACTICAL UMAC ALGORITHMS BASED ON CRYPTO CODE

DESIGNS

Summary: A study was carried out on the use of an improved UMAC algorithm in post-

quantum cryptography based on the formation of a substrate on the third layer of the hash code

generation by the McElise crypto-code system on elliptic codes. The paper considers a practical

algorithm for generating a hash code based on an example implementation of a cascading

UMAC hash algorithm with the McElise crypto-code construction on elliptic codes. Using a

crypto-code design allows you to save the universality of the hash code at the output of the

algorithm, which allows its use in large databases as an identifier. In addition, in the context of

1 Associate Prof., PhD, Simon Kuznets Kharkiv National University of Economics, a Associate

Professor of Department of Cyber Security and Information Technology olha.korol@hneu.net
2 Simon Kuznets Kharkiv National University of Economics, a Senior Lecturer of Department

of Cyber Security and Information Technology Alla.Gavrylova@hneu.net
3 Senior Research. D.Sc., Simon Kuznets Kharkiv National University of Economics, a head of

Department of Cyber Security and Information Technology serhii.yevseiev@hneu.net

222 Olha KOROL, Alla HAVRYLOVA, Serhii YEVSEIEV

the implementation of a full-scale quantum computer, US NIST experts consider crypto-code

systems as one of the effective post-quantum cryptography algorithms. This approach allows

you to implement the UMAC modification on various modifications of crypto-code structures

and to ensure the formation of authentication profiles of different strength and length

Keywords: UMAC hashing algorithm, McElice crypto code constructions, elliptic codes

1. Introduction

An important direction in the development of post-quantum cryptography today is

crypto-code systems (designs) (CCS). Their formation is based on the use of algebraic

codes disguised as the so-called random code [1], [2]. CCS allow integrally to

implement fast cryptographic data conversion and ensure the reliability of the

transmitted data based on noise-resistant coding [3], [4]. Despite the advantages, their

use in modern software and hardware is hampered by their practical implementation with

the required level of cryptographic strength, and withstanding the attack of V.M.

Sidelnikov on the basis of linear-fractional transformations allowing to open a private key

(generating and / or verification matrix, depending on the McEliece or Niederreiter crypto-

code system) [5]. At the same time, according to experts from NIST USA, these crypto-

code designs can provide the required level of protection and are able to withstand modern

threats. This is confirmed by the participation of the McEliece crypto code construction in

the NIST contest for post-quantum cryptography algorithms.

Analysis of the last researches and publications. The development of computing

capabilities in recent years, and in the first place, the creation of full-scale quantum

computers, has jeopardized the use of classical mechanisms of not only symmetric

cryptography, public key cryptography (including algorithms using the theory of

elliptic curves), but also algorithms for providing authenticity services based on MDC

and MAC codes, specialized hash functions [1], [3], [6], [7]. In the face of modern

threats and the use of cryptanalysis algorithms using full-scale quantum computers,

the use of the SHA-3 algorithm and the winning algorithms of the NESSIE European

cryptographic contest in authentication and digital signature algorithms is questioned

because of the possibility of hacking. Under such conditions, an increase in the level

of cryptographic stability can lead to an increase in the length of key sequences and a

decrease in the rate of cryptographic transformations. The use of the UMAC algorithm

with the formation of the substrate of the third layer based on MASH-2 leads to an

increase in the level of stability, collisions, but also to a decrease in the conversion

speed [8], which is an indirect confirmation of the possibility of reducing the speed of

crypto conversions in the conditions of post-quantum cryptography. An important task

is to increase the speed of cryptocjnversions while ensuring the required level of

cryptographic stability of this algorithm. In [3], [4], practical algorithms for crypto-code

constructions are considered, which provide their practical implementation by reducing

the power of the alphabet. Their application in the UMAC algorithm will not only provide

the required level of cryptographic stability of the generated hash code, but also preserve

its versatility.

 Practical UMAC algorithms on crypto code designs 223

Research problem – investigation of the possibility of using McEliece crypto-code

constructions with elliptic codes (modified, flawed codes) based on a practical

example in the UMAC algorithm.

2. Constructing a modified UMAC algorithm using the McEleice CCС

In [9], [10], a mathematical model and a structural diagram of the hash code

generation in the UMAC algorithm were considered using, as an algorithm for

forming a substrate (a pseudorandom sequence that provides the hash code

cryptographic stability), the McEliese crypto code construction using elliptic codes

(EC) (modified elliptical codes (MEC), flawed codes). Figure 1 shows a structural

diagram of the formation of a modified UMAC algorithm using the McEliece CCC

on various algebraic-geometric codes ЕС, МЕС.

UMAC

Private key G, X, P, D

Public key

 = Xi × G × Pi × Di

 MEC

IV1,IV2=EC-hr

 (elongated)

MEC

IV1=EC-hi

(shortened)

Y=YL3 Tag⊕

UMAC

Tag

UHASH-hash

 YL1=HashL1(KL1,M)

Carter-Wegman-hash

 YL3=HashL3(KL31,KL32,YL2)

POLY-hash

 YL2=HashL2(KL2,YL1)

M

cX= i × GX + e

⊕

KL3

KL2

key formationKL1

ǁcxǁMǁYǁ

Y`=Y`L3 Tag

UHASH-hash

 Y`L1=Hash`L1(K`L1,M)

Carter-Wegman-hash

Y`L3=Hash`L3(K`L31,K`L32,Y`L2)

POLY-hash

 Y`L2=Hash`L2(K`L2,Y`L1)

 Secret key ЕС

K={a1,a2,…,a6} a GF(q)∀

∈

⊕Comparison

Y`=Y

⊕
Tag=Hash(K,M,Taglen)

 PDF(K,Nonce,Taglen)⊕

iEC
G

X
iEC

G

iEC
G

X

X-1, P-1, D-1

сX
*=cX× D-1×P-1

Si=сX
*×HT

S=H×e’

cX’=e’+сX
*

 comparison

 cX cX’⊕

...

key formation

cX

Figure 1. The scheme of transmitting a message from the sender to the recipient and

checking the integrity of the received through a comparison of the codograms and

hash codes using the CCC McEliece at MEC

The use of various algebraic-geometric and multichannel cryptography codes will

allow the formation of various lengths hash code and provide the required level of its

cryptographic strength. The main steps for generating a hash code are considered in

[10].

Lets consider the practical implementation of the modified UMAC algorithm using

the McEliece CCC in the EC using an example.

224 Olha KOROL, Alla HAVRYLOVA, Serhii YEVSEIEV

2.1. Hash code generation in the UMAC algorithm

The creation of a hash for an open message is carried out in parallel with the formation

of the codogram, but we will describe the computational transformations according to

these actions in sequence.

Table 1. Input data

1L IY universal hash-function value (UHASH-hash) of first level hashing

3L IY hash-function value (Carter-Wegman-hash) of third level hashing

T data block

Blocklen data block length (bytes)

K secret key

Keylen secret key length (32 bytes)

Tag integrity and authenticity control code

1L IK secret key of the first hashing level, consisting of subkeys K1, K2, …,

Kn

3L IY second-level hash secret key consisting of keys KL31 (subkeys K1, K2,

…, Kn) and KL32 (subkeys K1, K2, …, Kn)

M length of the transmitted plaintext array i

'K pseudo random key sequence

Numbyte pseudo-random key sequence length (number of subkeys)

Index subkey number

І=11 transmitted plaintext (k- bit information vector over GF(q))

Xor (⊕) bitwise summation

Implementation:

According to the structural scheme of iterative formation Y, Pad and Tag for an open

sender message using an UMAC algorithm [9], [10] we distinguish the following

calculation steps:

2.1.1. 1st layer formation

UHASH-hash function value of the first level hashing 1L MY we will calculate by the

formula:

()1 1 1 ,L I L L IY H ash K I=
 (1)

To form 1L IK , we will imagine it as a key sequence of four-byte subunits:

1 1 2|| || ... ||L I I I nIK K K K=
, (2)

where || – concatenation (joining) of strings corresponding to subkeys.

The amount of subkey data depends on the values Numbyte and Blocklen:

1024 16 3 1072
33, 5 33

32 32

Numbyte
n

Blocklen

+ × = = = = ≈

1,2,...,33i=> = .

 Practical UMAC algorithms on crypto code designs 225

Insofar as
iT Index i= , then for the first layer Index =1, => iT :

T1 = 1 || 1 = 00000001 000000001=>K1I

T2 = 1 || 2 = 00000001 000000010=> K2I

T3 = 1 || 3 = 00000001 000000011=> K3I

T4 = 1 || 4 = 00000001 000000100=> K4I

T5 = 1 || 5 = 00000001 000000101=> K5I

T6 = 1 || 6 = 00000001 000000110=> K6I

T7 = 1 || 7 = 00000001 000000111=> K7I

T8 = 1 || 8 = 00000001 000001000=> K8I

T9 = 1 || 9 = 00000001 000001001=> K9I

T10 = 1 || 10 = 00000001 00001010=> K10I

T11 = 1 || 11 = 00000001 00001011=> K11I

T12 = 1 || 12 = 00000001 00001100=> K12I

T13 = 1 || 13 = 00000001 00001101=> K13I

T14 = 1 || 14 = 00000001 00001110=> K14I

T15 = 1 || 15 = 00000001 00001111=> K15I

T16 = 1 || 16 = 00000001 00010000=> K16I

T17 = 1 || 17 = 00000001 00010001=>K17I

T18 = 1 || 18 = 00000001 00010010=> K18I

T19 = 1 || 19 = 00000001 00010011=> K19I

T20 = 1 || 20 = 00000001 00010100=> K20I

T21 = 1 || 21 = 00000001 00010101=> K21I

T22 = 1 || 22 = 00000001 00010110 => K22I

T23 = 1 || 23 = 00000001 00010111 => K23I

T24 = 1 || 24 = 00000001 00011000 => K24I

T25 = 1 || 25 = 00000001 00011001=> K25I

T26 = 1 || 26 = 00000001 00011010 => K26I

T27 = 1 || 27 = 00000001 00011011=> K27I

T28 = 1 || 28 = 00000001 00011100 => K28I

T29 = 1 || 29 = 00000001 00011101=> K29I

T30 = 1 || 30 = 00000001 00011110=> K30I

T31 = 1 || 31 = 00000001 00011111 => K31I

T32 = 1 || 32 = 00000001 00100000=> K32I

T33 = 1 || 33 = 00000001 00100001=> K33I

Based on the length М of input message (M=3 bytes), amount of blocks Т=1, therefore,

the number of subkeys on this layer is the same. Wherein

1 1 0000000100000001L IK T= = .

The hash-code values of this layer are calculated using the following formula:

1 1() mod 32L I L IY I K= +
 (3)

1L IY = (0100110+10000001)mod32 = 111

2.1.2. 2-nd layer formation

Since the length of M is less than 1,024 bytes, this level of hashing will not be

performed, and we will perform calculations using the hash code of the third level.

2.1.3. 3-rd layer formation

Number of subkeys for 31LK and 32LK also depends on the values Numbyte and

Blocklen.

Formation of 31L IK

Number of subkeys for 31L IK :

64 4
8

32

Numbyte
n

Blocklen

× = = =

 1,2,3,4,5,6,7,8i=> =

Therefore, to form 31L IK we will imagine it as a key sequence of eight four-byte

subunits:

31 1 2 3 4 5 6 7 8|| || || || || || ||L I I I I I I I I IK K K K K K K K K= (4)

For the third layer at Index =3, =>
i

T :

T1 = 3 || 1 = 00000011 00000001 => K1I

T2 = 3 || 2 = 00000011 00000010 => K2I

T3 = 3 || 3 = 00000011 00000011 => K3I

T4 = 3 || 4 = 00000011 00000100 => K4I

T5 = 3 || 5 = 00000011 00000101 => K5I

T6 = 3 || 6 = 00000011 00000110 => K6I

T7 = 3 || 7 = 00000011 00000111 => K7I

T8 = 3 || 8 = 00000011 00001000 => K8I

226 Olha KOROL, Alla HAVRYLOVA, Serhii YEVSEIEV

Formation of 32L IK

Number of subkeys for 32L IK :

4 4
0, 5 1

32

Numbyte
n

Blocklen

× = = = ≈

1i=> =

To form 32L IK we will imagine it as a key sequence of 1 four-byte subunit:

32 1L I IK K=
 (5)

For the third layer at Index=4, =>
i

T :

i
T = 4 || 1 = 00000100 00000001 => 1IK

The hash-code value of the third layer is calculated using the following formula:

36 32
3 1 32

36 32
1 32

((mod(2 5)) mod 2)

(() mod 32) mod(2 5)) mod 2)

L I L I L I

I L I

Y Y xorY

I K xorY

= − =

+ −
 (6)

36 32
3 ((1 1 m od (2 5)) m o d 2) 0 0000 100 00 0000 01 1 000 000 0010L IY xo r= − =

 (7)

2.2.1. Formation of the Pad substrate

Input data:

x3+y2z+yz2=0 algebraic curve over a field GF(22)

K secret key

Keylen secret key length (32 bytes)

e=00100200 secret error vector weight
1

(e) t
2h

d
w

− ≤ =

1 2

3 0
X

=

nondegenerate k×k matrix

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

P

 =

permutation matrix of size n×n

 Practical UMAC algorithms on crypto code designs 227

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D

 =

diagonal matrix equal 1

2 2 3 0 1 3 0 1

3 3 2 1 0 2 1 0
G

=

generating matrix

І=11 transmitted plaintext (k- bit information

vector over GF(q))

Points of an algebraic curve:

 Р1 Р2 Р3 Р4 Р5 Р6 Р7 Р8 Р9

X 0 0 0 1 2 3 1 2 3

Y 1 0 1 2 2 2 3 3 3

Z 0 1 1 1 1 1 1 1 1

The formation of the substrate on the CCC:

1) Find the public key, which in the McEliece cryptosystem is the matrix [3]:

EC
XG X G P D= × × ×

 (8)

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 2 2 2 3 0 1 3 0 1 1 0 0 0 0 0 0 0

3 0 3 3 2 1 0 2 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

EC
XG

 = × × ×

×

2 1 3 0 1 1 1 0

0 2 2 2 2 0 3 2

 =

228 Olha KOROL, Alla HAVRYLOVA, Serhii YEVSEIEV

2) A cryptogram (codogram) is a n-length vector, which is calculated by the

following formula:

EC
X XC I G e= × +

, (9)

where vector E C
XI G× is the code word of masked code, i.e. belongs to (n,k,d)-code

with generating matrix E C
XG ; vector е is a one-time session secret key.

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0
11

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

00100200 23023322XC

 = × ⊕

=

3) Cipher of generated cryptogram 23023322 is transmitted to the transmission

channel to the recipient.

2.2.2. The formation of a pseudo-random lining (substrate) using the PDF
function

To ensure the cryptographic stability of the UMAC algorithm at the level of stability

of the used cryptographic algorithm, we form a pseudo-random lining PadCx for I

using PDF function:

(, ,)Pad PDF K Nonce Taglen=
 (10)

Input data:

K=0106 secret key

Keylen secret key length (4 bytes)

Taglen the length of the integrity control code (authenticity) PadCx (4

bytes)

Nonce unique number for input message I (8 bytes)

Numbyte subkey length (equal to Keylen)

Index subkey number (0)

Сx=23023322 cryptogram

According to the pseudo-random Pad lining formation procedure for I, it is necessary

to form the following subkey, presented as a function KDF [8–10]:

(, ,)K KDF K Index Numbyte′ =
 (11)

(0106, 0, 4)K KDF′ =

Pseudo-random Pad lining will look like:

 Practical UMAC algorithms on crypto code designs 229

(0106, 8, 4) 1101010Pad PDF= =

As a result of the substrate formation, various parts of it can be used as an additional

initialization vector.

3. Hash code verification at the receiver using the UMAC algorithm

Generation of message authentication codes is possible according to the formula [9,

10]:

()
3

, , , (, ,)

(, ,) L M

UMAC K I Nonce Taglen Hash K I Taglen

PDF K Nonce Tagle

Tag

Padn Y

= = ⊕
⊕ = ⊕

 (12)

10000000010 1101010 10001101100Tag = ⊕ =
 (13)

To generate a summary code of the reliability of the transmitted text, we will use the

found value of the hash code 3L MY (7) and authentication code for codogram Tag

(13) sender’s plaintext:

3L MY aY T g= ⊕
 (14)

1010000000010 10001101100 1101110 110Y = ⊕ = =
 (15)

3.1. Finding the error vector from the XC∗
 cryptogram

To verify the received message based on the verification of hash codes on the

receiving side, the authorized user needs to calculate the sender's session key (error

vector) to form a pseudo-substrate Tag.

Authorized user who knows the secret key К, getting a cryptogram XC∗ , starts

decoding it. Input data:

XC =23023322 cryptogram

К=0106 secret key

1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

P−

 =

matrix inverse to the permutation

matrix P (since its determinant is

equal to 1, 1P − = TP)

230 Olha KOROL, Alla HAVRYLOVA, Serhii YEVSEIEV

1

1 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D−

 =

matrix inverse to the diagonal matrix

D – unipotent matrix (square matrix,

all eigenvalues are equal to 1), which

saves weight by Hamming of е vector

1 0 2

3 1
X

−
=

matrix inverse to a non-degenerate

matrix X

Implementation:

1) we construct a vector, which is a code word of a code with a generating matrix G,

distorted by no more than t bits:

* 1 1
X XC C D P− −= × × , (16)

*

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0

23023322 22202

0 1 0 0 0 0 0 1 0 0

XC

 = × × =

221

2) we get an error syndrome:

* T
XS C H= × (17)

1 1 1 1 1 1 1 1

0 0 1 2 3 1 2 3

0 1 2 2 2 3 3 3
22202221

0 0 1 3 2 1 3 2

0 0 2 3 1 3 1 2

0 1 3 3 3 2 2 2

S

= ×

S00= 1

S10= 2+1+2+3+3=1

S01= 2+3+3+1+1+3=1

S20= 2+3+2+1+2=0

S11= 3+2+1+2+2=0

S02= 2+1+1+3+3+2=0

S(1,1,1,0,0,0)

3) we find the polynomial of the error locator (Λ(x)),based on its general

presentation:

() 00 10Λ 0x a a x y= + + =
 (18)

00 10 00 01
00 10

10 20 01 11

1 1 1
... 0; 1

1 0 0

S S a S
a a

S S a S

× = = =

 Practical UMAC algorithms on crypto code designs 231

0Λ(xy) x y= + = - polynomial error locators

4) we localize the error according to the Chen procedure:

Р1 (0,0,1) Λ (х,у) =0+0=0 – error

Р2 (0,1,1) Λ (х,у) =0+1=1

Р3 (1,2,1) Λ (х,у) =1+2=3

Р4 (2,2,1) Λ (х,у) =2+2=0 – error

Р5 (3,2,1) Λ (х,у) =3+2=1

Р6 (1,3,1) Λ (х,у) =1+3=2

Р7 (2,3,1) Λ (х,у) =2+3=1

Р8 (3,3,1) Λ (х,у) =3+3=0 – error

5) imagine the error in the form of a vector with indications of erroneous positions:

е’=е100 е6000е8

6) finding the multiplicities e1, e4 and e8, solving a system of equations by the

formula:

S H e′ ′= × (19)

00020003e′ = (20)

7) as a result, we get a cryptogram '
XC taking into account the error vector (20):

' * 00020003 22202221 22222224X XC C e′= + = ⊕ =
 (21)

This codeword is used as the basis for the formation of the substrate according to the

UMAC algorithm.

3.2. Hash-codes verification

An authorized user (recipient) generates a hash code using expressions (1) - (15).

Verification is carried out by comparison, received from the sender and the generated

hash codes. If they coincide, a decision is made that the plaintext received through the

open channel is not modified.

4. Conclusions

As a result of the research, practical algorithms for generating a hash code and its

verification based on the UMAC algorithm using McEliece crypto code constructions

on the EC were developed. This mechanism of message authenticity can be used not

only on elliptic codes, but also on modified (shortened, and / or elongated) elliptic

codes, as well as on flawed codes using hybrid crypto-code constructions. This

approach allows the practical implementation of a fast hashing algorithm with a level

of strength in post-quantum cryptography.

232 Olha KOROL, Alla HAVRYLOVA, Serhii YEVSEIEV

REFERENCES

1. BERNSTEIN D., BUCHMANN J., DAHMEN E.: Post-Quantum Cryptography.

– 2009, Springer-Verlag, Berlin-Heidleberg. – 245 p.

2. KUZNETSOV А. А., PUSHKAREV А. I., SVATOVSKIY I. I., SHEVTSOV А.

V.: Несимметричные криптосистемы на алгебраических кодах для

постквантового периода / А. А. Kuznetsov, А. I. Pushkarev, I. I. Svatovskiy,

А. V. Shevtsov // Radiotehnika. – 2016. – Vyp. 186. – P. 70 – 90.

3. HRYSHCHUK R., YEVSEIEV, S. SHMATKO A.: Construction methodology

of information security system of banking information in automated banking

systems: monograph, 284 p., Vienna.: Premier Publishing s. r. o., 2018.

4. YEVSEIEV S.: The development of the method of multifactor authentication

based on hybrid crypto-code constructions on defective codes / S Yevseiev, H

Kots, S Minukhin [and other] //. East European Advanced Technology Journal, –

2017, T. 5/9(89). – P. 19 – 35.

5. СИДЕЛЬНИКОВ В.М.: Криптография и теория кодирования. Материалы

конференции «Московский университет и развитие криптографии в

России», МГУ. – 2002. – 22 с.

6. Final report of European project number IST-1999-12324, named New European

Schemes for Signatures, Integrity, and Encryption, April 19, 2004 – Version 0.15

(beta), Springer-Verlag

7. Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm

Competitionhttp Andrew Regenscheid, Ray Perlner, Shu-jen Chang, John Kelsey

8. KOROL O., PARHUTS L., YEVSEIEV S.: Razrabotka modeli i metoda

kaskadnogo formirovaniya МАС s ispolzovaniyem modelyarnyh preobrazovaniy

/ Olha Korol, Lubomir Parhuts, Serhii Yevseiev // Zahyst informacii. – T. 15. –

№3. – lypen-veresen 2013. – P. 186 – 196.

9. YEVSEIEV S., OLHA K., HAVRYLOVA A.: Development of authentication

codes of messages on the basis of UMAC with crypto-code McEliece’s scheme

on elliptical codes / Serhii Yevseiev, Olha Korol Alla Havrylova // Materials of

VIІth International Scientific and Technical Conference "Information protection

and information systems security": report theses, May 30 –31, 2019. – Lviv: Lviv

Polytechnic Publishing House, 2019. – 1 electron. opt. disk (DVD). – С. 86 – 87.

10. HAVRYLOVA A., OLHA K., YEVSEIEV S.: Development of authentication

codes of messages on the basis of UMAC with crypto-code McEliece’s scheme.

International Journal of 3D printing technologies and digital industry 3:2 (2019).

P.153–170.

