Igor ANDRUSHCHAK!, Andriy SVERSTIUK?, Nazar MILY AN?

Opiekun naukowy: Vasyl MARTSENYUK*

ARCHITEKTURA MIKROSERWISOWA WYBRANEGO
ROZWIAZANIA DLA MEDYCYNY RATUNKOWEJ

Streszczenie: Artykul jest poswigcony prezentacji podejScia mikroserwiséw w celu
opracowania systemu informacyjnego dla medycyny ratunkowej. Realizacja jest oparta na
szablony Spring, Spring Boot oraz Spring Cloud.

Stowa kluczowe: medycyna ratunkowa, mikroserwisy, spring

MICROSERVICES ARCHITECTURE OF ONE SOLUTION FOR
EMERGENCY MEDICINE

Summary: The work is devoted to presentation of microservices approach for development of
information system for emergency medicine. Implementation is based on usage of spring,
Spring Boot and Spring Cloud frameworks.

Keywords: emergency medicine, microservices, spring framework

1. Introduction

A variety of approaches and techniques are used when developing information
systems for medical practice and research [1-17].

Primarily they are based on so called monolithic architecture. In such case you are
developing a server-side enterprise application. It must support a variety of different
clients including desktop browsers, mobile browsers and native mobile applications
[18].

! Narodowy Uniwersytet Techniczny w Lucku, wydzial, specjalnoé¢: analiza systemowa, email
9000@Intu.edu.ua

2 Narodowy Uniwersytet Medyczny w Tarnopolu, specjalno$é: modelowanie matematyczne,
email sverstyuk@tdmu.edu.ua

3 Narodowy Uniwersytet Techniczny w Tarnopolu, specjalnos¢: technologie informacyijne,
email nazar.milyan@gmail.com

4prof. dr hab., Akademia Techniczno-Humanistyczna w Bielsku-Biatej, wydzial budowy
maszyn i informatyky, email vmartsenyuk@ath.bielsko.pl



16 Igor ANDRUSHCHAK, Andriy SVERSTIUK, Nazar MILYAN, Vasyl MARTSENYUK

In turn Microservice is a paradigm that serves for organization and usage of
distributed services that can have different proprietors. The basic ideas of this
architectural approach was stated by Martin Fowler in 2014 in [19].

Microservices allow large systems to be built up from a number of collaborating
components. It does at the process level what a lot of frameworks (e.g., Spring) has
always done at the component level: loosely coupled processes instead of loosely
coupled components.

Much technologies and the protocols that are created to realization of business
processes [20] and their support are included in the content of widely understoodable
microservices architechture. Those technologies together create powerfull
instruments for

- implementation of business processes,

- opening for access to the client for different type of services through a network,

- seeking out of services (UDDI Universal Description, Discovery of and of
Integration);

- uses of services through a client,

- determinations of business processes with help of languages of determination of flow
of problems and creations of complex services.

Mentioned above possibilities of microservices technology and in particular
arrangement of services in greater processes are as background of application of
microservices to the construction of the system of medical information services.
However at the market there is a shortage of such solutions now.

Composition of services in microservice architecture results in combining of separate
services (WS, Web Service) in a structure named by a process that describes the
algorithm of implementation of series of services. In order to do it, possession of the
detailed information on motion of process is needed (before it will be determined).
In case of emergency medicine service the detailed determination of tasks is not
possible. Reason is unpredictability of motion of incident and also factors that
influence on flow of possible treatment scheme:

number and state of health of patients;

variety of services that belong to many health establishments;

dynamics of patient state can change in the process of implementation of treatment;
accessability (primarily distance) to healthcare establishments for patient.

We can divide those factors into two groups:

1) information on state of patient previously known. It should be known from the point
of view of healthcare, e.g. patient passport data, health assessment, previous histories
of diseases and so on,

2) exceptional/change of certain factors. It can be instant change of well-known or
unknown previously factor, e.g.: fracture, blooding, emergency etc.

It all causes that the detailed setting by default, how procedure of emergency medicine
should look like, is impossible. Moreover, settings are not possible usually, how must
be conducted healthcare in situation, when this situation will arise up already. The
reason of that is a typical shortage of sufficient data during undertaking of action,
since at the beginning of healthcare as a rule we don't have possibility to deliver
accordingly exact data [21].

The objective of this paper is to present the way of application of Microservices
architecture for the problem of development of information system for emergency
medicine.



Microservices architecture of one solution for emergency medicine 17

Potential problems that touch an emergency medicine and idea of construction
of the system that basing on the paradigm of Microservice forms separate healthcare
services into one coordinated healthcare process, will be presented in the paper.
The offered solution means to determine dynamically process without detailed
definition from point of view of the whole action. When basing the behaviors on
typical charts, the system executes certain introductory steps. During their execution,
additional data on the basis of the system for determination of further actions are
gotten. As far as progress of emergency medicine action gets each time more detailed
data dealing with certain case and necessary actions, a process is being specified
in the process of implementation.

2. Materials and Methods

Conception of solution of problem of emergency medicine. Consider that on a certain
street in city accident has happend. In accident a dozen of car passengers damaged.
Many people feel damages and need emergency medical assistance.

From the point of view of rescue services a problem is difficult for the solution,
because information about a case is usually inexact on this stage: it is unknown, how
many people are injured and how their damages are serious, how many coaches are
needed on the place of accident, how many places in a hospital needed to be prepared
to give a help for injured.

We need fast and well-coordinated rescue action. Human factor can lead to errors
under such circumstances, which can influence on saving lifes of injured ones. In this
situation it is the best to dispose of the certain system able to manage a rescue action,
liquidating the errors related to the emotions, by work in stress and necessity of the
rapid reacting.

Possibility of support of rescue services is covenient here through the computer
system that has an access to all well-known information about a case, that is capable
efficiently to plan actions on the basis of all well-known data, is able dynamically to
adjust actions to the changable conditions and also to coordinate the actions
of elements of different services.

Requirements for information system. In ideal case system that would solve
the above-mentioned problems that arise in rescue medical service should be able:

to give independence to the different elements that are his constituents;

to do possible a suggestion of its own services in the system;

to do possible composition of component services into more complicated one such as
a complex service for injured person.

Main principle is opening for access of actions of medical services as network services
of web-service at application of paradigm of microservices.

The system implements its task through a construction of a skeleton of process on the
initial stage. Then as far as the flow of additional data will grow gradually, it allows
corresponding adaptation of actions to the queries for concrete case.

Basic services of emergency medicine. For the purpose of development of the system
we need to determine the basic complete set of services that will be able to serve to
creation of arbitrary rescue action. It seems that determining a complete set of services
in emergency medicine is impossible, taking into account a fact that together with
development of medicine there will appear new services that should be taken into



18 Igor ANDRUSHCHAK, Andriy SVERSTIUK, Nazar MILYAN, Vasyl MARTSENYUK

account during composition. The reasoning requires to determine certain standard
of description of services, that enables development of new ones in future instead
of attempts of determination of complete base that is necessary for system running.
Examples of services that will be token into account when developing rescue action
are:

Arrival of ambulance to the place of incident (ArrivalToPlaceOfIncident) is simple
service that means arrival of ambulances to the given place of incident. It includes
arrival to the place of case; implementation of assessment of injured person;
delivering primary care; preparing report including data of injured persons in details.
Hospitalization of injured persons (HospitalizationOfPatient) is service that consists
of the acceptance of patient to the hospital and the delivering corresponding help to
him.

Transportation of patient (TransportationOfPatient) 1is service implying
the transportation of injured patient to the hospital.

3. Results

In this part of the article there will be presented an example of problem solution of
emergency medicine action using basic set of services mentioned above (Fig.1).

e coe

Online Emergency Medicine

Service
Incident Hospitalization | | Transportation
Service Service Service
Incidents Hospitalizations Transportations
DB DB DB

Figure 1. Problem solution of emergency medicine action using basic set of
microservices

Let's consider that a travelling accident happened and casual witness is calling
on a line. Operator of line inputs the system data concerning the case, after that the
system begins processing the case immediately.



Microservices architecture of one solution for emergency medicine 19

We imagine an online emergency medicine service with separate microservices for
arrival-to-place-of-case, hospitalization-of-patient and transportation-of-patient:
Inevitably there are a number of moving parts that we have to setup and configure to
build such a system. How to get them working together is not obvious - we need to
have good familiarity with Spring Boot since Spring Cloud leverages it heavily,
several Netflix or other OSS projects are required and, of course, there is some Spring
configuration “magic” [23].

Service Registration. When you have multiple processes working together they need
to find each other. If you have ever used Java’s RMI mechanism you may recall that
it relied on a central registry so that RMI processes could find each other.
Microservices has the same requirement.

The developers at Netflix had this problem when building their systems and created a
registration server called Eureka (“I have found it” in Greek). Fortunately for us, they
made their discovery server open-source and Spring has incorporated into Spring
Cloud, making it even easier to run up a Eureka server. Here is the complete
discovery-server application:

@SpringBootApplication
@EnableEurekaServer
public class ServiceRegistrationServer {

public static void main(String[] args) {
// Tell Boot to look for registration-server.yml
System.setProperty ("spring.config.name", "registration-—
server");
SpringApplication.run(ServiceRegistrationServer.class,
args);
}
}
Spring Cloud is built on Spring Boot and utilizes parent and starter POMs. The
important parts of the POM are:
<parent>
<groupld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-parent</artifactId>
<version>_ Brixton_.RELEASE</version> <!—-— Name of
release train —-->
</parent>
<dependencies>
<dependency>
<!-- Setup Spring Boot —-—>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>

<dependency>
<!-- Setup Spring MVC & REST, use Embedded Tomcat

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>



20 Igor ANDRUSHCHAK, Andriy SVERSTIUK, Nazar MILYAN, Vasyl MARTSENYUK

<!-- Spring Cloud starter -->

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter</artifactId>
</dependency>

<dependency>
<!-- Eureka for service registration —--—>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter—-eureka-
server</artifactId>
</dependency>
</dependencies>

By default Spring Boot applications look for an application.properties or
application.yml file for configuration. By setting the spring.config.name property we
can tell Spring Boot to look for a different file - useful if you have multiple Spring
Boot applications in the same project.
This application looks for registration-server.properties or registration-server.yml.
Here is the relevant configuration from registration-server.yml:

# Configure this Discovery Server

eureka:
instance:
hostname: localhost
client: # Not a client, don't register with yourself

registerWithEureka: false
fetchRegistry: false

server:
port: 1111 # HTTP (Tomcat) port

By default Eureka runs on port 8761, but here we will use port 1111 instead. Also by
including the registration code in my process I might be a server or a client. The
configuration specifies that I am not a client and stops the server process trying to
register with itself.

Try running the RegistrationServer now. You can open the Eureka dashboard here:
http://localhost:1111 and the section showing Applications will be empty.

From now on we will refer to the discovery-server since it could be Eureka or Consul.
Creating a Microservice: Arrival-to-Place-of-Incident-Service. A microservice
is a stand-alone process that handles a well-defined requirement.

When configuring applications with Spring we emphasize Loose Coupling and Tight
Cohesion, These are not new concepts (Larry Constantine is credited with first
defining these in the late 1960s [24]) but now we are applying them, not to interacting
components (Spring Beans), but to interacting processes.

In this example, we have a simple Arrival-to-Place-of-Incident (Incident)
microservice that uses Spring Data to implement a JPA IncidentRepository and Spring
REST to provide a RESTful interface to incident information (Fig. 2). In most respects
this is a straightforward Spring Boot application.



Microservices architecture of one solution for emergency medicine 21

L0

Registration-
Service (Eureka)

@, Looks for R ) .
“incident-service” egisters as “incident-service
- : : — )
T\ Web ) |nCId§nt |nc|dents
- Service Service DB
RESTful Requests JPA/SQL

Figure 2. Incident microservice that uses Spring Data to implement a JPA
IncidentRepository and Spring REST to provide a RESTful interface to incident
information

What makes it special is that it registers itself with the discovery-server at start-up.
Here is the Spring Boot startup class:

@EnableAutoConfiguration

@EnableDiscoveryClient

@Import (IncidentsWebApplication.class)

public class IncidentsServer {

QAutowired
IncidentRepository incidentRepository;

public static void main(String[] args) {
// Will configure using incidents-server.yml

System.setProperty ("spring.config.name", "incidents-
server");

SpringApplication.run(IncidentsServer.class, args);

The annotations do the work:

@EnableAutoConfiguration - defines this as a Spring Boot application.
@EnableDiscoveryClient - this enables service registration and discovery. In this
case, this process registers itself with the discovery-server service using its application
name.

@Import(AccountsWebApplication.class) - this Java Configuration class sets up
everything else.

What makes this a microservice is the registration with the discovery-server via
@EnableDiscoveryClient and its YML configuration completes the setup:



22 Igor ANDRUSHCHAK, Andriy SVERSTIUK, Nazar MILYAN, Vasyl MARTSENYUK

# Spring properties
spring:
application:
name: accounts-service

# Discovery Server Access
eureka:
client:
serviceUrl:
defaultZone: http://localhost:1111/eureka/

# HTTP Server
server:
port: 2222 # HTTP (Tomcat) port

Note that this file
Sets the application name as incidents-service. This service registers under this name
and can also be accessed by this name.
Specifies a custom port to listen on (2222). All our processes are using Tomcat, they
can’t all listen on port 8080.
The URL of the Eureka Service process

Run the IncidentsService application now and let it finish initializing. Refresh the
dashboard http://localhost:1111 and you should see the INCIDENTS-SERVICE listed
under Applications. Registration takes up to 30 seconds (by default) so be patient -
check the log output from RegistrationService
For more detail, go here: http://localhost:1111/eureka/apps/ and you should see
something like this:
<applications>
<versions__delta>1l</versions__delta>
<apps__hashcode>UP_1_</apps__hashcode>
<application>
<name>INCIDENTS-SERVICE</name>
<instance>
<hostName>autgchapmplml.corp.emc.com</hostName>
<app>INCIDENTS-SERVICE</app>
<ipAddr>172.16.84.1</ipAddr><status>UP</status>
<overriddenstatus>UNKNOWN</overriddenstatus>
<port enabled="true">3344</port>
<securePort enabled="false">443</securePort>

</instance>
</application>
</applications>

Alternatively go to  http://localhost:1111/eureka/apps/INCIDENTS-SERVICE
and see just the details for IncidentsService - if it’s not registered you will get a 404.

4. Conclusions

In the work an innovative approach to construct business process is presented.
In opposite to typical application where the process is completely determined before
its starting in this case process is not completely determined at the moment when its



Microservices architecture of one solution for emergency medicine 23

running is started. It is implemented using service that can be presented as handler for
another process. That service composes process based on data obtained and runs it.
There is some lack of solutions for the problem presented. Although Microservice
approach offers tools leading to development of system supporting emergency
medicine. An advantage of the system offered is its usage based on mechanism of
market. All services are searched through Internet. Moreover any institution can add
its own service and in turn to join to the system.

It is not entirely known mechanism of integration of processes in emergency
medicine. One of the most promising possibilities is application of Micriservices.
Methods of search of appropriate services will be object of future research. In such
case an application of ontological descriptions can be solution of the problem. Also
the future investigations should be dealing with document formats for exchanging by
the system elements, identification of basic services and taking into account economic
factors when selecting services for patient.

REFERENCES

1. LYAPANDRA A. S., MARTSENYUK V. P., IGVOZDETSKA. S., SZKLARCZYK
R.: Qualitative analysis of compartmental dynamic system using decision-tree
induction, in Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS) 2015 IEEE 8th International Conference on
(Volume 2), 2015, pp. 688—692.

2. MARTSENYUK V. P., ANDRUSHCHAK I. Y., KUCHVARA O. M.: UML-
modeling of Decision Support System for Medical Research, Med. Informatics Eng.,
no. 2, pp. 27-34, 2015.

3. MARTSENYUK V. P., KPABEIIb H. O., SEMENETS A. V., BAKYJIEHKO /JI.B.,
CBEPCTIOK A. C., KIIMMVK H. ., CAPABYH P. O., KYUBAPA O. M.: Ilpo
HiIXOIM 0 BIPOBADKEHHS €mr-CHCTeM B raigy3i OXOPOHH 3J0pPOB’S YKpaiHH, in
“3100yTKU KIIHIYHOI Ta €KCIEPUMEHTAIbHOI MEIULUHK @ MaTepiald IiJCYyMKOBOI
HAYKO- BO-TIPAKTUYHOT KOH(EPEHIIil, MpUCBsiueHOT aM’ ATl pekropa 4i.-kop. HAMH
VYkpainu, npod. JI.S. Kopanbuyka (Tepraomnins, 17 yepsus 2015p., 2015, pp. 259-260.

4. NAKONECHNY O. H., MARTSENYUK V. P., ANDRUSHCHAK 1. Y.: Meroau
OpuilHATTA pillleHb, ONTUMI3alii Ta KepyBaHHA B CUCTEMI HiJTPUMKU MEIUYHHMX
nociipkenb, in XXV International Conference “Problems of Decision Making under
Uncertainties (PDMU-2015)" Abstracts. May 11-15, 2014, Skhidnytsya, Ukraine,
2015, pp. 12-13.

5. SEMENETS A. V., MARTSENYUK V. P.: On the CDSS platform development for
the open-source MIS OpenEMR, Med. Informatics Eng., no. 3, pp. 2240, Oct. 2015.

6. MARTSENYUK V. P., ANDRUSHCHAK 1. Y.: Po3poOka KiIiHi4YHOI €KCIIepPTHOI
CHCTEMH, IO TPYHTYETHCS Ha MPaBUIIaX, METOIOM IOCIiIOBHOTO TOKPUTTS, HaykoBi
npaui. Komn’orepsi Texnosnorii, vol. 237, no. 225, pp. 5-10, 2014.

7. MARTSENYUK V. P., ANDRUSHCHAK I. Y., STAKHANSKA O. O.: Po3po6ka
EKCIEePTHUX CHCTEM Ha OCHOBI TexHoJjorii Data mining, in 3100yTku KIiHIYHOI Ta
EKCIePUMEHTANIbHOT MeIUIMHU. 30IipHHK MarepialiB  MiJCYMKOBOI HayKOBO-
npakTuyHoi koHpepenuii. 21 yepsusa 2014 poky, 2014, pp. 141-142.

8. MARTSENYUK V. P, MARTSENYUK O. M., ANDRUSHCHAK I Y.
Mathematical tools for decision support system of medical system research under
uncertainties, in XXIV International Conference “Problems of Decision Making under



24

Igor ANDRUSHCHAK, Andriy SVERSTIUK, Nazar MILYAN, Vasyl MARTSENYUK

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.

23.
24.

Uncertainties (PDMU-2014)” Abstracts. September 1-5, 2014, Chesky Rudolets,
Chech Republic, 2014, pp. 11-13.

NAKONECHNY O. H., MARTSENYUK V. P., ANDRUSHCHAK I Y.
Indopmaniiini TexHonorii NpPUUHATTS pillleHb, ONTUMi3alii Ta KepyBaHHA B
cucTeMHHUX MeanuHux pociimkennax. Lutsk: JIHTY, 2014.

MARTSENYUK V. P, SELSKYY P. R.: EdexkruBHicTb BUKOPUCTAHHS
iHpOpMALIIHHUX Ta TEJIEMEIUYHUX TEXHOJIOTIH Ha TNEpPBHMHHOMY pIiBHI HaJaHHS
MeAu4yHOI Jjomomord, in Marepianmd HayKOBO-NIPAaKTU4YHOI KOHQepeHWii 3
MDKHapoJHO0 yuacTio “Indopmarusauis peabinitauiiinoro npouecy,” 2013, pp. 66—
67.

MARTSENYUK V. P, SELSKYY P. R.: EdexkruBHicTb BUKOPUCTAHHS
TENEMEIMYHUX TEXHOJIOTIH Ui TOKpAIIeHHS SKOCTI JIKyBaJbHO-AiarHOCTUYHOT
pobOTH Ha NMEPBUHHOMY DiBHI, AKTyajbHi IHMTaHHS (apMaleBTUUHOI i MEeIUYHOI
HayKH Ta mpakTuky, vol. 12, no. 3, pp. 53-54, 2013.

MARTSENYUK V. P., SELSKYY P. R.,, SEMENETS A. V.. Po3pofka i
BIIPOBDKCHHS iH(GOpMalIHHOI CHCTEeMH 3amucy (camo3amucy) Tali€HTiB Ha
KOHCYyJbTallil0o 10 (axiBLiB YyHIBEpPCUTETChKOI JiKapHi, YKpaiHCbKuil >XypHan
TeJeMEIUIIMHH Ta MEANYHOI TeneMaTuky, vol. 11, no. 2, pp. 173-178, 2013.
MARTSENYUK V. P, ANDRUSHCHAK I. Y.: IIpo koHuenTyaibHy MOZEb
CHUCTEMH WIATPUMKHM pillleHb B CHCTEMHHUX MEIUYHHX JOCITIDKeHHsX, in XIX
International Conference “Problems of Decision Making under Uncertainties (PDMU-
2012)” Abstracts. April 23-27, 2011, Mukachevo, Ukraine, 2012, pp. 162—163.
MARTSENYUK V. P., ANDRUSHCHAK I. Y., GANDZYUK N. M., KLYMUK N.
Y., KUCHVARA O. M., MAYHRUK Z. V.: Decision Support System for Medical
System Research,” in XX International Conference PDMU-2012 Problems of
Decision Making under Uncertainties Proceedings - Applied Papers, University., E.
Hajkova, J. Michalek, O. G. Nakonechny, and J. Neubauer, Eds. Brno: Publishing
office of the University of Defence, 2012, pp. 123-128.

MARTSENYUK V. P., ANDRUSHCHAKT. Y.: [IporpaMHe cepeioBHIIIE i ATPUMKH
CUCTEMHHX (apMaKOKIHETHYHHMX JOCII/DKeHb: MiAXia Ha ocHOBI Web-TexHouoriii,
OITyunuit inTenexr, no. 3, 2009.

NAKONECHNY O. H., MARTSENYUK V. P, BARANYUK 1. O., SVERSTYUK
A. S.: Ilpo nporpaMHO-TEXHIYHUH KOMIUIEKC HiATPUMKUA HAYKOBUX MEIUYHUX
JOCHIDKeHb, in MenuuHi TexHoJorii i Buia ocita: Marepianu 1 Beeykpaincbkol
HAYKOBO-IIpakTU4HOI koHbepenuil. JIyupk, 28 TpaBus 2004 p., 2004, pp. 92-97.
MARTSENYUK V. P., SEMENETS A. V., SVERSTYUK A. S., KOVALCHUK O.
Y., KRAVETS N. O.: IIpo indopmaniiiny Mozelb iHTEIEKTyalbHOI MEIUUHOI 6a3u
JaHux, in 30ipka Te3 [omoBigeid y4acHUKIB MiKHapoaHOI HayKOBO-NPAKTUYHOT
KOH(epeHIil CTyIeHTIB, acmipaHTiB Ta Mojoaux BYeHux “Komm’ totepu. [Iporpamu.
Iareprer. 2003” (21-23 xBiTHa 2003 p., M. Kuis), 2003, p. 46.

Webpage: http://microservices.io/patterns/monolithic.html

Webpage: https://martinfowler.com/articles/microservices.html

Webpage: https://www.infoq.com/articles/soa-healthcare

Webpage: https://www.pcpcc.org/initiative/primary-care-information-project-pcip
WACHOCKI G.: Zastosowanie SOA do celéw konstrukcji systemu wspomagajacego
ratownictwo medyczne, Automatyka 13/2 (2009), 653-661

Webpage: https://spring.io/blog/2015/07/14/microservices-with-spring

Webpage: https://en.wikipedia.org/wiki/Cohesion_%28computer_science %29



