

Józef TOMASZKO1

Opiekun naukowy: Stanisław ZAWIŚLAK2

PORÓWNANIE ORAZ WIZUALIZACJA ALGORYTMÓW

WYZNACZANIA ŚCIEŻEK W GRAFACH

Streszczenie: Praca dotyczy porównania algorytmów poszukiwania ścieżek w grafach oraz ich

wizualizacji. W napisanej aplikacji generowane są grafy spójne, przedstawione w oknie

graficznym programu. Rozkład wierzchołków na panelu wyświetlania jest równomierny.

Rozważano algorytmy tzw. SPP: Dijkista’s and Bellman-Ford’s. Posiadając dane położeń
wierzchołków grafu – zaimplementowano także algorytm heurystyczny A*. Dodatkowo

rozważano algorytmy przeszukania, które także wyznaczają ścieżki. Przestawiono wizualnie

uzyskane trasy. W tabelach zestawiono analizy czasu pracy programu. Podsumowano

dokonane porównania.

Słowa kluczowe: algorytmy, generowanie, graf spójny

COMPARISON AND VISUALIZATION OF ALGORITHMS
OF PATHS SEARCHING IN GRAPHS

Summary: The present paper presents the comparison of the algorithms which search for paths

in connected graphs as well as visualization of these paths. The prepared application allows for

generation of connected graphs, of moderate density - to present them in the graphic panel of

the computer program. The distribution of vertices is even. The following algorithms were

considered: so called performing SPP: Dijkista’s and Bellman-Ford’s ones. Based on the data

related to the positions of graph vertices on the screen panel – it was possible to implement also

the heuristic algorithm A*. Moreover, search algorithms were considered which also determine

paths as additional result. All the paths were presented visually in the graphic panel. In tables,

results of comparisons were listed. Some final conclusions were added.

Keywords: algorithms, generation, connected graph

1. Introduction

The basic task of graph theory is to study the properties of structures, called graphs.

These structures are complex mathematical objects consisting of two sets (V, E).

Elements of the set V are called vertices, and elements of the E set are called edges.

These objects are related to each other, because set E is defined as a subset of V × V,

i.e. a set of pairs (the Cartesian product of sets) [5,7]. Simplifying the subject, it can

1 Mgr inż., graduated from the University of Bielsko-Biala, Poland, email
2 Dr hab. inż., prof. ATH, University of Bielsko-Biala, Poland, email szawislak@ath.bielsko.pl

230 Józef TOMASZKO, Stanisław ZAWIŚLAK

be concluded that the vertices are connected to each other by means of edges. In

contrast, in the sense of discrete mathematics, a graph is equivalent to: (a) incidence

matrix and (b) relation. The edges may be undirected or directed, which in turn

corresponds to a symmetrical or asymmetrical relationship. There are many ways to

describe graphs. The graphical representation is the most transparent from the human

point of view. It is customary approach that the vertices are represented as circles,

dots or other pictograms connected to each other by straight lines or via curves of any

shape (sometimes they are arcs or Bezier curves). Graph drawing is special branch of

knowledge having its own annual conference. The rules for planar graphs are given

in book [9]. Moreover, aesthetic graph drawing was analyzed by Professor Helen

Purchase in many papers and conferences [10, 11]. Her tips were partly incorporated

in the written software e.g. vertices should be evenly distributed in the visualization

panel - what was done. General rules of creation algorithms for discrete problems can

be found in [1]. Some papers were dedicated to finding paths in graphs [2,4]. Topic is

still under investigations e.g. instead of fixed weight, random values are assigned. The

comparison of different algorithms was discussed in [6] – however in our solutions

visualisation and user friendly interface are additional indictor. Start and destination

points are marked by means of mouse, changing vertices’ colors.

Graphs are a very universal tool for solving problems related to searching. Usually we

are looking for the shortest route, the fastest route or information about whether there

is any route connecting two points. Knowledge, which flow from this research is used

in a lot of areas of live. For example GPS application must have implementation of

algorithms for search the best road to travel. Another use of the research is routing,

i.e. searching not only the shortest but the fastest route for sending packets between

computers in the network. In this case, the vertices are routers and the edges of the

connection between them. Thanks to such solutions, the efficiency of computer

networks has increased many times. Path-searching algorithms find their application

also in entertainment. They are widely used in various games in which characters have

to go to a designated place.

2. Algorithms for graphs without weight

2.1 Breadth-first search algorithm

 The breadth-first search algorithm is one of the simplest methods of graph

scanning. The search for the path starts from the selected starting point. Then go to

the first vertex next to it. If it is not the destination, it has not been searched, and it is

not in the queue to be searched, we put it in queue. Sequentially visit all the neighbors.

If none of them is the end point, we continue to search for the element that is the first

in the queue. The steps of the algorithm are repeated until the desired vertex is found.

The result of the algorithm's operation is a root-length search tree at the starting point.

However, we are not sure if the solution is the best in terms of path optimization.

2.2. Depth-first search algorithm

 Depth-first searching is the second of the simplest algorithms for looking for a

way in the graph. As in any algorithm, the search starts from the starting point. In the

next step, go to the first vertex next to it. If it is not, then the target vertex has not been

 Comparison and visualization of algorithms of paths searching in graphs 231

searched, and it is not in stack of the vertices to be searched, we put it on the stack.

Then we go to all neighbors of the starting point. If none of them is a destination, we

continue to search for the item last added to the stack. The steps of the algorithm are

repeated until the desired vertex is found. The result of the algorithm is the search tree

deep into the root at the starting point. As with the Breadth-first search, there is no

certainty as to the quality of the solution received. If the graph is connected, then each

crawl vertex is visited only once as a result of searching through the above methods.

In this sense, the algorithms are fully effective. If further searches continue, we can

detect all the connectivity components of the analyzed graph.

2.3. Random step of depth-first or breadth-first algorithm

 Searching randomly depth-first or breadth-first is a combination of the two

mentioned algorithms. Also in this algorithm, the search starts at the starting point.

Just like in previous algorithms, first go to the first adjacent vertex. Again, if this is

not the desired vertex, it is no longer in the list of searched vertices, and it is not in

the list of vertices to be searched, we put it in the list. Then we visit all the neighbors

of the starting point. If none of the neighbors is the final destination, the next step is

choose by lottery. The steps of the algorithm are repeated until the desired vertex is

found. Again, we have no information about the quality of the solution found.

3. Algorithms for weighted graphs

3.1 A* algorithm

 The algorithm A * is a heuristic algorithm for searching for the shortest path in a

weighted graph. It is widely used in the field of artificial intelligence, and in computer

games. The algorithm works by selecting vertices that have the best transition cost

factor to bring us to the point you are looking for. To do this, visit each of the

neighbors of the currently searched item in sequence and check their distance to the

destination point. Then, the top is chosen, which has the best transition cost factor to

get closer to the target, and the rest is added to the list of reserve tops. The distance of

neighbors to the end point is checked again. Taking into consideration the new points

and the reserve list, the best of the vertices is chosen. The steps are repeated until the

final vertex is reached. The algorithm is complete and optimal. This means that it finds

the shortest path connecting both vertices.

3.2 Dijkstra algorithm

 The algorithm was developed by the Dutch computer scientist Edsger Dijkstra. It

is used to find the shortest path between the start point and all other vertices in the

graph with edges having non-negative weights. It is possible to perform such

modification so that the graph stops working when it reaches the destination point.

For this purpose, the algorithm places all the vertices adjacent to the starting point to

the list, remembering which point it is possible to go to. Then go to the neighbor, to

whom the cost of the transition is the smallest. Again, he places the vertices connected

with him that have not been visited yet. Again, it selects the transition through the

232 Józef TOMASZKO, Stanisław ZAWIŚLAK

edges with the lowest weights. This algorithm is greedy. This means that at every step,

he is looking for a locally best transition to the next, yet unreached destination.

3.3 Bellman-Ford algorithm

 An algorithm used to determine the shortest paths in a graph weighted from the

selected vertex to all other vertices of the graph. The operation of the algorithm does

not differ significantly from the Dijkstra method. The only difference is to reconsider

the paths that lead through the vertices that are better than during the greedy approach.

Therefore there may be edges with negative weights in the graph. The only limitation

is the absence of cycles with a total negative weight.

4. Results of analyzes

The analyzes were carried out for five graphs with different parameters. Each of them

has a different number of vertices and edges. In order to draw the right conclusions,

it is worth collecting the results obtained, grouping them according to selected

parameters and presenting them in a clear form. In the next step, the received data

should be collated, looking for the dependencies resulting from the tables obtained in

this way. The result of such action should be an answer to the question, which

algorithm should be used depending on the current needs of the consumer.

4.1 Exemplary results of analysis: time [in milliseconds]

The exemplary graphs are shown in Figs. 1 and 2. The found paths are marked in other

color than the graph vertices and edges. The performance of program is registered and

stored. The reports were generated and the collected results are depicted in tables.

Table 1. Results of the analysis time in milliseconds for row of graphs with increased

number of vertices n = 200 up to 2000

Algorithm \Vertexes 200 400 800 1200 2000

DFS 2,4033 6,0384 17,9056 82,6583 247,2479

BFS 2,0421 9,636 30,7057 189,988 766,7776

Random DFS or BFS 3,5708 7,4699 20,1265 81,0026 410,3915

A* 10,0309 9,1452 31,5553 54,7474 151,4847

Bellman-Ford 5,7837 26,5291 92,9959 242,6377 1402,9104

Dijkstra 5,7579 17,8989 55,3088 207,6891 1088,6863

 Comparison and visualization of algorithms of paths searching in graphs 233

Figure 1. Exemplary graph of n=200 vertices (left) and found paths by means of

A* algorithm (right); starting and destination point are pointed by user by means of

mouse

Figure 2. Found paths by means of A* algorithm (right); starting and destination

point are pointed by user by means of mouse, in the case n=800.

The resolution is not sufficient for presentation of every vertex separately. However,

due to the fact that the route is marked in different color as well as the start and

destination points. The performance of consecutive

234 Józef TOMASZKO, Stanisław ZAWIŚLAK

4.2 Exemplary results of analysis: number of completed steps

Table 2 Results of the number of completed steps

Algorithm \Vertexes 200 400 800 1200 2000

DFS 107 250 510 781 910

BFS 191 394 769 1199 1994

Random DFS or

BFS 191 362 633 918 1669

A* 54 259 524 634 504

Bellman-Ford 262 676 1538 2223 3754

Dijkstra 199 399 799 1199 1999

4.3 Exemplary results of analysis: path length measured as number of edges

Table 3 Results of the path length

Algorithm \Vertexes 200 400 800 1200 2000

DFS 2370 2929 4322 6596 7306

BFS 1268 1551 1401 1521 1302

Random DFS or BFS 1454 2304 1853 2155 2212

A* 1222 1428 1351 1442 1247

Bellman-Ford 1222 1428 1351 1442 1247

Dijkstra 1222 1428 1351 1442 1247

4.4 Selection of the analysis the number of vertexes in path

Table 4 Results of the number of vertexes in path

Algorithm \Vertexes 200 400 800 1200 2000

DFS 33 52 124 180 219

BFS 17 26 36 39 32

Random DFS or BFS 22 42 50 60 63

A* 18 28 38 42 36

Bellman-Ford 18 28 38 42 36

Dijkstra 18 28 38 42 36

 As can be seen from the tables above, the smallest increase in time in relation to

the number of vertices in the graph is shown by the algorithm A*. It is worth noting

that it has the most complex path estimation mechanics. This is reflected by

comparing the ratio of times and quantities of iterations performed to those of other

algorithms. Nevertheless, thanks to the promotion of transitions that best approximate

 Comparison and visualization of algorithms of paths searching in graphs 235

the search to the target vertex and the ignoring of non-decaying elements, the time

invested in calculations is lower many times. Its ‘competitors’ in the form of Bellman-

Ford and Dijkstra algorithms - achieve many times worse results. Therefore, it is the

best way to look for the way, taking into account the time needed to find a solution.

Another advantage of the algorithm is the fact that it always finds an ideal solution,

which is not without significance for the optimization of travel time between sites (in

case of real journeys). This makes the A * algorithm to be used in every situation, as

long as it is possible to use.

 In the case when a given graph has no edge weights, it is not so obvious to decide

which way to look for the best path. The algorithm of graph passing deeply gives the

best time result, but the results of the path length and the number of vertices are even

several times worse than the other algorithms. Correlation of these results strongly

limits the legitimacy of using this method of searching for a path. Its use only makes

sense if the consumer needs information on the existence of any route between

selected points.

 The results obtained thanks to the breadth-first searching are very much resemble

those obtained by the A * algorithm. This is a very good result for graphs without

edge weights. This makes the algorithm useful when it is necessary to determine the

path closest to the optimal one, and we cannot use weighted algorithms for this

purpose. The third algorithm for graphs without weights cannot be unambiguously

assessed. The randomness of its steps plays a large role in it, but in most cases he

achieved results worse than the DFS algorithm and better than the BSF algorithm.

5. Conclusions

Own computer application was written for generation of simple graphs and searching

the paths throughout the graph. The visualization is on an acceptable lever. The target

was a possibility to compare the considered algorithms which is performed via

generation of versatile protocols. These data were converted into the above placed

tables which enables detailed comparisons described in the chapter 4.

REFERENCES

1. AHO A. V., HOPCROFT J. E., ULLMAN J. D.: Data structures and algorithms,

Addison-Wesley, London, 1983.

2. AHUJA R. K., MEHLHORN, K., ORLIN J. B., and TARJAN R. E.: Faster

algorithms for the Shortest Path Problem, Journal of Association of Computing

Machinery, Volume 37, 1990, pp. 213- 223.

3. FRIEZE A.M., GRIMMETT G.R.: The shortest-path problem for graphs with

random arc-lengths, Discrete Applied Mathematics, North-Holland, Volume 10,

1985, pp. 57-77.

4. GOLDBERG A. V., HARRELSON Ch.: Computing the shortest path: A search

meets graph theory, Proceedings of the sixteenth annual ACM-SIAM symposium

on Discrete algorithms, 2005, pp. 156-16.

236 Józef TOMASZKO, Stanisław ZAWIŚLAK

5. KULIKOWSKI J.L.: Zarys teorii grafów, Państwowe Wydawnictwo Naukowe

PWN, Warszawa, 1986.

6. TARAPATA Z.: Nieklasyczne modele i metody planowania tras w systemach

wspomagania planowania ruchu: analiza złożoności, efektywności i zastosowań,
Prace Naukowe Politechniki Warszawskiej, seria Transport, Zeszyt 60, 2007.

7. WILSON R.: Wprowadzenie do teorii grafów, Wydawnictwo Naukowe PWN,

Warszawa, 2000.

8. ZOCHOWSKA R., Modelowanie wyboru trasy w gęstych sieciach miejskich.

Zeszyty Naukowe Politechniki Śląskiej Nr kol. 1836, seria Transport, Zeszyt 71,

Gliwice 2011.

9. TAKAO NISHIZEKI, SAIDUR RAHMAN: Planar graph drawing, World

Scientific, 2004, 295p.

10. PURCHASE, Helen. Which aesthetic has the greatest effect on human

understanding?. In: International Symposium on Graph Drawing. Springer, Berlin,

Heidelberg, 1997. pp. 248-261.

11. PURCHASE H.C., COHEN R.F., MURRAY J.: Validating graph drawing

aesthetics. In: International Symposium on Graph Drawing. Springer, Berlin,

Heidelberg, 1995. pp. 435-446.

