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ALGORYTMY GRAFOWE DO WERYFIKACJI IZOMORFIZMU 
 DRZEW GRAFÓW 

Streszczenie: W artykule porównano trzy algorytmy sprawdzania izomorfizmu wybranej klasy 

grafów, a mianowicie drzew – będących grafami spójnymi bez cykli. Opracowano własną 
aplikację do realizacji algorytmów oraz wizualizacji drzew. Opisano testy programu dla 

wybranych przykładowych drzew, w których porównano zaimplementowane algorytmy. Dla 

pewnych drzew, algorytm uwzględniający korzeń grafu, musi być realizowany kilkukrotnie. 

 
Słowa kluczowe: korzeń drzewa, warstwy wierzchołków, wizualizacja 

COMPARISON OF GRAPH THEORY BASED ALGORITHMS  
CHECKING ISOMORPHISM OF TREES 

Summary: In the paper, three algorithms of checking the isomorphism of the chosen class of 

graphs i.e. trees were compared. Tree is a graph itself or a subgraph of a particular graph, which 

is connected and it does not contain cycles. Own application was written, in which these 

algorithms are utilized. The immanent part of the programme is a possibility of visualization of 

the discussed trees. The tests of programme were performed with success for some exemplary 

trees. 
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1. Introduction 

Problem of isomorphisms of graphs consists in showing (proving) that the considered 

graphs have the same form. Considering G1(V1, E1)  and G1(V1, E1), in general, it is 

necessary that they have the same numbers of vertices and edges. However, to show 

isomorphism, we can show that their adjacency matrices are the same. In brute force 

approach it would lead to generation of n! permutations and rearrangement of 

adequate matrices so many times. Comparison of the adequate matrices leads to 

issuing the decision about existence or lack of isomorphism. In case of moderate great 

n this is impossible to perform in reasonable time of computer work. Therefore, other 

approaches should be considered. The problem is related to combinatorics [1,2,7,9]. 
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The problem of isomorphism has versatile applications e.g. in generation of 

graph families in so called enumerative graph theory. One should be assured that the 

generated graphs are unique. Enumeration is a problem of itself. The applications are 

related to e.g. graph-based models of gears, especially planetary gears [3,4,5,6,8]. 

Reverse problem consists in generation graphs being gears’ models. In [6] loop 

method was used, whereas in [5] neuronal networks were utilized. In [13], application 

of isomorphism for checking similarity of biochemical structures – is described. 

In the present paper, the considerations are restricted to graph trees only. For general 

graphs, the problem is still unsolved [10,11,12]. However, for trees, there are some 

effective procedures for checking the isomorphism property. The present 

consideration are done based upon the thesis [14] where more analyses and more 

descriptions can be found.  

A tree is a connected graph which has (n-1) edges, it could be a graph itself 

or a subgraph of other graph. If a particular tree vertex is distinguished then it is called 

as a root (tree root). Three known methods of checking trees’ isomorphism were 

incorporated in own software. The algorithms will be described as well as the prepared 

applications will be utilized for selected examples.  

 Formal definition of isomorphism of trees: T1(V1, E1) and T2(V2, E2) is 

as follows: it exists bijection between the sets of trees’ vertices � : V1 → V2, such 

that:  

( )1 1 2, ( , ) ( ), ( )u V u E u Eν ν φ φ ν∀ ∈ ∈ ⇔ ∈   (1) 

So, the statement can be read that if a particular edge belongs to set E1 then its image 

via function � is an adequate edge in set E2. 

2. Algorithms 

2.1. LD Algorithm 

An example of performance of the LD algorithm is presented in figure 1. The vertices 

are presented as small circle. Inside each circle, the names of vertices are entered. 

Additionally, next to them special ID codes are placed. At the beginning, each vertex 

has ID equal to 1. 

 In the first step, all the leaves of the considered trees are detected. We register 

the end points, therefore we have the set of vertices {4; 5; 6; 7} for the tree G, and set 

{c; d; e; g} for tree H, respectively. Then, these vertices are removed, their neighbor 

vertices obtain new ID values, depending on the number deleted neighbor vertices. 

After this step, new leaves appear (in the trees) – there are vertices {2; 3} for tree G, 

and set {a; f} for tree H. We remove the leaves once again, and after this step in each 

tree remains just one vertex. 

In the fragment of the code (Code 1), the function performing leaves removal from 

trees is presented. The function inputs the list of tree Vertices, in the loop it goes 

subsequently through all tree vertices. It checks whether number of neighbors of a 

particular vertex is equal to one. It - in turns – means that the currently analyzed vertex 

is a leaf. If ‘yes’, then the leaf is passed to removal and the ID value if its parent 

increases by 1. After performance of the loop, all the leaves are removed, and the 

function returns (gives) the list of all vertices, after one step of leaves removal. 
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Figure 1. Some actions performed within the framework of first algorithm, 

at the beginning it seems that graphs are non-isomorphic 

 

Code 1. Removal of leaves from a tree 

 

Input data: List of vertices representing the considered tree 

Output data: List of tree vertices after one step of leaves removal 

 
public List<LDVertex> RemoveLeaves(List<LDVertex> vertexList) 

{ 

    List<int> verticesToRemoveList = new List<int>(); 

    foreach (var vertex in vertexList) 

    { 

        if (vertex.connections.Count == 1) 

        { 

            LDVertex tmpVertex = vertexList.Find(x => 

x.number == vertex.connections[0]); 

            tmpVertex.connections.Remove(vertex.number); 

            tmpVertex.ID = tmpVertex.ID + 1; 

            verticesToRemoveList.Add(vertex.number); 

        } 

    } 

    foreach (var number in verticesToRemoveList) 

    { 
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        vertexList.Remove(vertexList.Where(x => x.number == 

number).FirstOrDefault()); 

    } 

    return vertexList; 

} 

 
The main function of the LD algorithm, is presented underneath (Code 2) via the fragment of 

the code of prepared application. Within the framework of the function, there is a loop which 

is performed until the moment when in both trees remain only one vertex, respectively. 

In each iteration, the previously described function of leaves removal is performed for 

each tree simultaneously. And finally, if in both trees, remain the same number of 

vertices – then both lists of vertices are sorter in the decreasing manner taking into 

account their ID values, then the values are compared between the analyzed trees. In 

the case, if in a particular iteration – these values will not equal, it means that the trees 

are not isomorphic. If the loop is terminated and in every tree remain exactly by one 

vertex then it means that the considered trees are isomorphic. 

 

Code 2. Main function of LD algorithm 

Input data: Two lists of vertices representing two trees which are compared/checked. 

Output data: Information about isomorphism of  entered trees. 

 

public bool CheckIsomorphism() 
{ 

    do 

    { 

        vertexList1 = RemoveLeaves(vertexList1); 

        vertexList2 = RemoveLeaves(vertexList2); 

        if (vertexList1.Count == vertexList2.Count) 

        { 

            vertexList1 = vertexList1.OrderByDescending(x => 

x.ID).ToList(); 

            vertexList2 = vertexList2.OrderByDescending(x => 

x.ID).ToList(); 

 

            for (int i = 0; i < vertexList1.Count; i++) 

            { 

                if (vertexList1[i].ID != vertexList2[i].ID) 

                    return false; 

            } 

        } 

        else 

            return false; 

 

    } while (vertexList1.Count > 1 && vertexList2.Count > 1); 

    return true; 

} 
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2.2. AHU Algorithm 

The algorithm name is related to the family names of its authors: Aho, Hopcroft and 

Ullman. The drawback of the AHU algorithm is its feature that it acts for the rooted 

trees. Therefore, aiming for utilizing of this algorithm for detecting of isomorphism 

of plain trees, these trees have to be converted into the rooted ones. On an example, 

presented in Figure 2, one can observe that the trees which are isomorphic as trees 

(plain trees), are not isomorphic as rooted trees. 

 
Figure 1. An example of the rooted trees which are non-isomorphic 

 – a root has to be assign to a root 

Therefore, to be sure that we choose the root vertices in the same position (in the same 

manner) in two considered trees –we should determine the centers of these two trees. 

In consequence, to perform the above defined task, it is necessary to find the 

longest path in every of the considered trees. The longest path in a tree – it is a path 

between two most remote vertices in the considered tree. Due to general features of 

trees, between two arbitrary tree vertices, it is possible to find one and only one path. 

So the path is unique. To find the discussed path, the following rules have to be used: 

• choose an arbitrary vertex w; 

• find the vertex v1 which has the longest distance from the vertex w (distance is 

measured in number of edges in the path); 

• find the vertex v2 which has the longest distance to the vertex v1; 

The path between the vertices v1 and v2  is the longest path of the tree and its 

center will be simultaneously the center of the tree and its new root. However, 

such operation could give us three different possible results: 

• each tree has one central vertex, in the case if their longest paths have the odd 

length; 

• each tree has two central vertices, in this case – their longest paths have the 

even length; 

• the considered trees have different numbers of central vertices, which just 

informs us that the trees are not isomorphic. 

In the case, when we have the rooted trees we can pass to the discussed algorithm. 

The AHU algorithm assigns to every tree vertex the complete history of its successors 

– named as „tuple” – special way of register. After such an assignment (of registers) 

from lowest levels up to the root, the complete structure of the tree is encoded. 
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Figure 2 Example of the assigned sequences/registers i.e. ‘tuples’ 

In Figure 3, one can see that each leaf has assigned sequence „(0)”, and its each 

predecessor (parent vertex) has assigned the sequences of its successors placed in 

parentheses „(”    and    „)”. 

 

Figure 3. Assignment of ‘tuples’ via special notation rules, using brackets 

Based on an example shown in Figure 4, one can observe that the presented rooted 

trees are isomorphic whereas their sequences are different. 

 

Figure 4. Assignment of ‘tuples’ for consecutive vertices – new idea of encoding 

Aiming for solving of this problem (graphically presented in Figure 4), we have to 

convert the sequences into new form called (for distinguishing purpose) as tuple. 

Value 0 is rejected, as not passing enough information and simultaneously we convert 

all the open parenthesis „(„ into the digit 1, and all closing parentheses „)” are 

converted into the digit 0. The rooted tree obtained after the conversion operation is 

presented in Figure 5. 
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Figure 5. Assignment of ‘tuples’ for vertices, utilizing sorting 

However, after entering new, converted sequences, the sequences of roots of the 

considered rooted trees remain different (Figure 5). Nevertheless, this change allows 

us for sorting the successors of each of vertices according to their sequence of tuple-

like form. After such an operation, we have the rooted trees shown in Figure 6, where 

we can see that the sequences assigned to their roots are the same, what is recognized 

as proving of their isomorphism. 

Underneath, some ideas of the prepared software are roughly described. 

Function finding the longest path 
 

In the Code 3, we present the fragment of the code of the applications in which the 

function finding the shortest path in a particular tree is given. The idea of the function 

is a recurrence way of acting. In lines 3 and 4, the mutually most remote vertices are 

detected (found). The internal recurrence function FindPathRec takes as the argument 

– the first of the considered vertices and search through the tree utilizing the classic 

algorithm of depth search until finding the second considered vertex, and then it gives 

back the value true. In the case, when the function gives back the value true – then 

the vertex, for which is was triggered, is entered onto the current list. After absolute 

termination of function, it gives back the longest path for the entered (considered) 

tree. 

 

Code 3. Finding the longest path in a particular tree 

Input data: List of tree vertices. 

Output data: List of vertices creating the longest path in the tree 

 
public List<int> FindLongestPath(List<AHUVertex> vertexList) 

{ 

    int firstVertex = FindFarthestVertex(vertexList, 1); 

int lastVertex = FindFarthestVertex(vertexList, 

firstVertex); 

    List<int> longestPath = new List<int>(); 

 

    List<int> passed = new List<int>(); 

 

FindPathRec(vertexList.Where(x => x.number == 

firstVertex).FirstOrDefault()); 

 

    bool FindPathRec(AHUVertex currentVertex) 
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    { 

        passed.Add(currentVertex.number); 

        bool _check = false; 

        if (currentVertex.connections.Contains(lastVertex)) 

        { 

            longestPath.Add(lastVertex); 

            longestPath.Add(currentVertex.number); 

            return true; 

        } 

        else 

            foreach (var vertex in currentVertex.connections) 

            { 

                if (!passed.Contains(vertex)) 

                    if (FindPathRec(vertexList.Where(x 

=> x.number == vertex).FirstOrDefault())) 

                    { 

                        

longestPath.Add(currentVertex.number); 

                        _check = true; 

                    } 

            } 

        return _check; 

    } 

    return longestPath; 

} 

 

Function assigning the sequence called ‘tuple’. 
 

The function presented in Code 4 assigns the value tuple to all vertices of the entered 

tree. It is accomplish in the recurrence manner. The function contains the inner 

function AssignNames, which starts from the tree root and then  is activated in the 

recurrence manner on all its successors. If the function considers (detects) a vertex 

which is a leaf – then it assigns value 10 to this vertex, in the opposite case – the 

function will be activated on the successors of this vertex and after performance of its 

tasks (activities), via the function ConcatenateTuples – it assignes to the vertex: the 

sorted list of sequences tuple successors of this vertex, replacing in the sequence 

„1temp0”, onto the value „temp”. 

 

Code 4. Assigning sequences called ‘tuples’ 

Input data: List of Vertices of the tree and the tree root. 

Output data: Value of ‘tuple’ for the tree root. 

 
public string ReturnTreeCenterTuple(List<AHUVertex> 

vertexList, int center) 

{ 

    List<int> passed = new List<int>(); 

    AssignNames(vertexList.Find(x => x.number == center)); 

 

    void AssignNames(AHUVertex currentVertex) 

    { 

        passed.Add(currentVertex.number); 

        if (currentVertex.connections.Count == 1) 

            currentVertex.tuple = "10"; 
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        else 

            foreach (var vertex in currentVertex.connections) 

            { 

                if (!passed.Contains(vertex)) 

                { 

                    AssignNames(vertexList.Where(x => 

x.number == vertex).FirstOrDefault()); 

                } 

            } 

        currentVertex.tuple = 

currentVertex.tuple.Replace("temp", 

ConcatenateTuples(currentVertex)); 

    } 

    string ConcatenateTuples(AHUVertex vertex) 

    { 

        List<string> tuples = new List<string>(); 

        foreach (var v in vertex.connections) 

        { 

            if (vertexList.Where(x => x.number == 

v).FirstOrDefault().tuple != "1temp0") 

                tuples.Add(vertexList.Where(x => x.number == 

v).FirstOrDefault().tuple); 

        } 

        tuples = tuples.OrderBy(x => x).ToList(); 

        string str = ""; 

        foreach (var tuple in tuples) 

        { 

            str += tuple; 

        } 

        return str; 

    } 

 

    return vertexList.Find(x => x.number == center).tuple; 

} 

 

Main function – performing the algorithm 
 

Finally, in the Code 5 - being a fragment of the presented applications - we present 

the main function checking isomorphism between two entered trees by means of the 

AHU algorithm. At the beginning, the longest paths are determined for both analyzed 

trees. Their lengths are compared, if the lengths are different then the trees are non-

isomorphic. In the next step, the centers of these paths are determined, which are 

entered into the list, because it could be a center consisting of 1 or 2 vertices.  

In the case when each tree has exactly by one-vertex centrum then the Vertex is 

recognized as the root and we trigger (call) the function which assigns the sequences 

‘tuples’. In the case when the values of ‘tuples’ for both roots (of both considered 

trees) are exactly the same then the trees are isomorphic. 

In the case if each tree has the center consisting of two vertices, then the function 

assigning the values ‘tuples’ is triggering (called) for each possible combination of 

the center vertices – considering them as tree roots and the obtained ‘tuples’ are 

compared. If a particular combination gives back the same values of ‘tuples’ for both 

considered trees then it means that the trees are isomorphic, on contrary – if any of 



178 Kazimierz SIKORA, Stanisław ZAWIŚLAK  

created combinations do not give back the value ‘true’ then it means that the trees are 

non-isomorphic. 

 

Code 5. Main function 

Input data: Two lists of vertices representing two tree – which are compared. 

Output data: Information about isomorphism of the entered (considered) trees 

 
public bool CheckIsomorphism() 

{ 

    List<int> longestPathTree1 = 

FindLongestPath(vertexList1); 

    List<int> longestPathTree2 = 

FindLongestPath(vertexList2); 

    if (longestPathTree1.Count != longestPathTree2.Count) 

        return false; 

 

    List<int> centerTree1 = FindTreeCenter(longestPathTree1); 

    List<int> centerTree2 = FindTreeCenter(longestPathTree2); 

 

    if (centerTree1.Count == 1) 

        if (ReturnTreeCenterTuple(vertexList1, 

centerTree1[0]) == ReturnTreeCenterTuple(vertexList2, 

centerTree2[0])) 

            return true; 

        else 

            return false; 

    else 

    { 

        if (ReturnTreeCenterTuple(vertexList1, 

centerTree1[0]) == ReturnTreeCenterTuple(vertexList2, 

centerTree2[0])) 

            return true; 

        if (ReturnTreeCenterTuple(vertexList1, 

centerTree1[1]) == ReturnTreeCenterTuple(vertexList2, 

centerTree2[0])) 

            return true; 

        if (ReturnTreeCenterTuple(vertexList1, 

centerTree1[0]) == ReturnTreeCenterTuple(vertexList2, 

centerTree2[1])) 

            return true; 

        if (ReturnTreeCenterTuple(vertexList1, 

centerTree1[1]) == ReturnTreeCenterTuple(vertexList2, 

centerTree2[1])) 

            return true; 

    } 

    return false; 

} 

Description of the third algorithm was presented in thesis [14]. The performances of 

the application for different exemplary trees are also described there, underneath only 

one particular case is shown. 
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3. Analyses based on utilization of the application 

The versatile analyses made in the thesis [14] confirmed that all the described 

algorithms give the same results. Here, one exemplary result is presented in Figure 7. 

The trees having the same number of vertices i.e. n = 20 were considered. The 

application has two sub-windows to present the considered trees. As can be seen, the 

considered trees are isomorphic. The conclusion (decision) is shown for user in the 

left-hand report panel. The background is green. One can see, that the LD  algorithm 

was utilized. It was performed within the period of less than 1 millisecond [ms], 

therefore the value 0 ms is shown in the appropriate line of the report. 

 

 

Figure 7. Results of performance of the program for the trees having  

n=20 vertices, utilizing the LD algorithm. 

In Figure 8, the chart was shown in which we can see the relationship between time 

of performance of the utilized algorithms vs. number of vertices of the tested trees.  

The tests were performed utilizing the computer equipped in the processor Intel Core 

i7-6700, frequency 3,7 GHz,  equipped in 8GB of RAM memory. For every of 

considered vertices’ numbers, three trees were generated and they were compared 

with themselves which guaranteed that the trees are isomorphic. Such situation was 

utilized just for creation of the charts. Every tests was performed - 10 times, average 

results are presented in Figure 9. 
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Figure 8. Charts of performance of the utilized Algorithms: time of performance 

[ms] vs. number of trees’ vertices. 

 

 

Figure 9. Bar charts of dependence:  

time of performance vs. number trees’ vertices. 

 

The application is user friendly and effective, however due to restricted visualisation 

panels relatively small trees can be shown in visible form. Like can be seen the AHU 

algorithm works within the longest times in every case. 
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4. Conclusions 

In the present paper the problem of checking the isomorphisms between two trees was 

discussed. Three algorithms were utilized. Own application was prepared 

incorporating these algorithms. It was tested on the set of exemplary trees showing it 

correctness and usability. The software can be utilized in didactics of subjects related 

to graph theory. 
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