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EFEKTYWNY ALGORYTM DLA SZYBKIEGO OBLICZANIA 

ODWROTNOŚCI PIERWIASTKA KWADRATOWEGO 

Streszczenie: Funkcje pierwiastka kwadratowego i odwrotności pierwiastka kwadratowego dla 

liczb zmiennoprzecinkowych są ważne dla wielu aplikacji. W artykule przedstawiono kilka 

modyfikacji oryginalnego algorytmu tzw. Fast Inverse Square Root (FISR) w celu poprawy 

jego dokładności dla liczb zmiennoprzecinkowych pojedynczej precyzji (typ float) standardu 

IEEE 754. Proponowane algorytmy są przeznaczone dla platform bez wsparcia sprzętowego 

tychże funkcji, takich jak mikrokontrolery i układy FPGA, ale z szybkimi operacjami 

zmiennoprzecinkowymi dla dodawania / odejmowania, mnożenia oraz FMA (fused multiply-

add). 

 
Słowa kluczowe: odwrotność pierwiastka kwadratowego, arytmetyka zmiennoprzecinkowa, 

algorytm FISR, stała magiczna, aproksymacja, funkcja FMA 

AN EFFICIENT ALGORITHM FOR FAST INVERSE SQUARE 

ROOT 

Summary: The square root and inverse square root functions for floating-point numbers are 

important for many applications. This paper presents a few modifications of the original Fast 

Inverse Square Root (FISR) algorithm to improve its accuracy. Normalized single precision 

floating-point numbers (type float) of IEEE 754 standard are considered. The proposed 

algorithms are designed for platforms without hardware support of these functions, such as 

microcontrollers and FPGAs, but with fast floating-point operations for addition/subtraction, 

multiplication, and fused multiply-add (FMA). 
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1. Introduction 

A floating-point arithmetic is widely used in many applications, such as 3D graphics, 

digital signal processing, and scientific computing [1-3]. Common algorithms of such 

arithmetic are, in particular, algorithms for calculating elementary functions, 

including inverse square root [3-14]: 

� = �
√�. (1) 

All these algorithms are iterative and require the formulation of an initial 

approximation. The more precise the initial approximation is, the fewer repetitions 

(iterations) are needed to calculate the function. In most cases, the initial 

approximation is formed using look-up tables (LUTs), which require memory. 

However, there is a known group of iterative algorithms without the use of LUT to 

obtain an initial approximation. They initially obtain an approximation using  

the so-called magic constant and are then used to implement an iterative process with 

the Newton-Raphson formulae. The algorithm calculates the initial value based  

on the magic constant using integer arithmetic and, after switching to a floating-point 

arithmetic, the resulting approximation is introduced into the iterative process. 

 

The inverse square root algorithms are suitable for software and hardware 

implementations, for example, in microcontrollers that lack an FPU and in FPGAs. 

 

In this article, we discuss the algorithm for calculating the inverse square root using  

a magic constant with reduced errors for floating-point numbers represented in the 

IEEE 754 standard. 

2. Known algorithms 

The best known version of the algorithm called Fast Inverse Square Root (FISR), 

which was implemented in the computer game Quake III Arena [7], is given below: 

 
1. float InvSqrt(float x){ 
2.   float halfnumber = 0.5f*x; 
3.   int i = *(int*)&x; 
4.   i = 0x5f3759df - (i >> 1); 
5.   x = *(float*)&i; 
6.   x = x*(1.5f - halfnumber*x*x); 
7.   x = x*(1.5f - halfnumber*x*x); 
8.   return x; 
9. } 

 

This InvSqrt code written in C/C++ implements a fast algorithm for calculating  

the inverse square root. In line 3, we convert the bits of the input variable � of type 

float to the variable � of type int. And in line 4 we determine an initial approximation 

�	 (which subsequently becomes the object of the iterative process) of the inverse 

square root, where R =  0x5f3759df is a “magic constant”. Note that from this point 

onwards, the variable � is regarded as the approximation of the function �. Line 5 
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converts the bits of the variable � of type int into the variable �	 of type float. Lines 6 

and 7 contain two classic successive Newton-Raphson iterations. 

 

If the maximum relative error of calculations after the second iteration is designated 

by �����, then the accuracy of this algorithm is only 

|�����| = 4.86 ∙ 10��,   or    log�$|�����|% = 17.65 (2) 

correct bits. The higher accuracy of the algorithm with magic constants is achieved  

in [9], namely 20.37 correct bits. Yet the improved algorithm with modified Newton-

Raphson iterations from [9] is more precise: 

 
1. float InvSqrt2(float x){ 
2.   float halfnumber = 0.5f*x; 
3.   int i = *(int*)&x; 
4.   i = 0x5f376908 - (i >> 1); 
5.   x = *(float*)&i; 
6.   x = x*(1.5008789f - halfnumber*x*x); 
7.   x = x*(1.5000006f - halfnumber*x*x); 
8.   return x; 
9. } 

 

The accuracy of the algorithm is approximately  

|�����| = 7.37 ∙ 10�&,   or    log�$|�����|% = 20.37 (3) 

correct bits. 

 

Figure 1. The graph of the relative errors of the InvSqrt2 algorithm after the first 

iteration for �()1,4% 

3. Analytical description of the algorithm 

First of all, in this section, we briefly describe the main results of [8-9]. Positive 

floating-point numbers that may be represented in form 
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� = $1 + ,�% ∙ 2-.  (4) 

are considered, where ,�ϵ)0,1% is the fractional part of the mantissa and 0�  

is the integer exponent. In other words, � is a binary floating point number written  

in a normalized exponential form. The exponent is defined by the formula 

0� = ⌊log�$�%⌋. (5) 

 

IEEE 754 standard specifies rules to store real numbers in binary format. For example, 

the floating-point number � of type float is encoded by 32 bits. The first bit 

corresponds to a sign (sign field). In our case, this bit is equal to zero. The next 8 bits 

correspond to a biased exponent 0� (exponent field). And the last 23 bits encode  

a fractional part of mantissa ,� (mantissa field). An integer encoded by these 32 bits, 

denoted by 3�, is given by 

3� = $4�56 + 0� + ,�%7�, (6) 

where 7� = 2�8 and 4�56 = 127. As a matter of fact, the algorithm InvSqrt can be 

rewritten in the following form (lines from 3 to 7): 

3� = convertToInt$�%; 
3BC = D  ⌊3� 2⁄ ⌋; 
�	 = convertToFloatH3BCI;  (7) 

�� = 1 2⁄ ∗ �	 ∗ $3  � ∗ �	 ∗ �	%; 
�� = 1 2⁄ ∗ �� ∗ $3  � ∗ �� ∗ ��%. 

 

The result of subtracting an integer ⌊3� 2⁄ ⌋ from the magic constant D is an integer 3BC, 

which is translated again into float (lines 4 and 5). It gives the initial (zeroth) piecewise 

linear approximation �	 of the function � = 1 √�⁄ . 

 

To find the behavior of the relative error when calculating �	 in the entire range  

of normalized floating-point numbers, as it was proven in [8-9], it is sufficient to 

describe its behavior in the range �ϵ)1,4%. In this range, there are three piecewise 

linear analytic approximations of the function �	: 

�	� =  �
K � + 8

K + �
L M,   �ϵ)1,2%; 

�	� =  �
L � + �

� + �
L M,   �ϵ)2, M%;  (8) 

�	8 =  �
�� � + �

� + �
�� M,   �ϵ)M, 4%, 

where M = 2 + 4,N + 2 7�⁄ . Here ,N is a fractional part of the mantissa  

of the magic constant D and ,N = 7���D  ⌊7���D⌋. It should be mentioned that 

 the maximum relative error of such piecewise linear approximations does not exceed 

1 $27�%⁄ . Taking into account the value of M, these three equations can be written as 

�	� =  �
K � + 1 + �

� ,N + �
KOP

,   �ϵ)1,2%; 
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�	� =  �
L � + 8

K + �
� ,N + �

KOP
,   �ϵ)2, M%;  (9) 

�	8 =  �
�� � + Q

L + �
K ,N + �

LOP
,   �ϵ)M, 4%. 

 

If the magic constant D is denoted by 

D = $R+,N%7�, (10) 

where R = ⌊7���D⌋, then under condition ,N < 1 2⁄  for equations (8) R = 190  

as in previous algorithms. However, in general case, 0 ≤ ,N < 1. 

 

Consider an example when R = 190 and 1 2⁄ ≤ ,N < 1. In this situation, according 

to the theory described in [8-9], equations (9) will have the form 

�	� =  �
� � + 1 + ,N + �

�OP
,   �ϵ)1, �U%; 

�	� =  �
K � + 1 + �

� ,N + �
KOP

,   �ϵ)�U , 2%;  (11) 

�	8 =  �
L � + 8

K + �
� ,N + �

KOP
,   �ϵ)2,4%, 

where 

�U = 2,N + �
OP

.  (12) 

 

Let us set the requirement to align all the maxima of the relative error (of both signs) 

for the first iteration on the first and third sections of the initial approximation (i.e. �	� 

and �	8). There are only five such points (as you can see later in Fig. 2). Note that  

in the algorithms InvSqrt1 and InvSqrt2 only some of these separate maxima  

for the components �	�, �	�, and �	8 are aligned. 

 

For this purpose, the first iteration will be carried out according to the formula 

�� = V��	$V�  ��	�	%. (13) 

Then, taking into account (11), the equations for piecewise linear approximations of 

the function �	 (which has three components) are represented by 

��� = V��	�$V�  ��	��	�%; 

��� = V��	�$V�  ��	��	�%;  (14) 

��8 = V��	8$V�  ��	8�	8%. 

 

The task is to find values V�, V�, and M, which in turn determines the magic constant 

D. To do that, we should define relative errors of each component �	�, �	�, and �	8. 

Using the following formula to calculate the relative error of the function � = 1 √�⁄  

after the first iteration 

�� = �� ∙ √�  1, (15) 
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we obtain the next equations: 

��� = V��	�$V�  ��	��	�% ∙ √�  1;  (16) 

��� = V��	�$V�  ��	��	�% ∙ √�  1; (17) 

��8 = V��	8$V�  ��	8�	8% ∙ √�  1.  (18) 

 

This errors have local maxima, in particular, at points 

������ = �
8 + �

8 ,N + �
8OP

, (19) 

��8��� = 2 + K
8 ,N + �

8OP
. (20) 

 

For the second component �	�, the point �U from equation (12) should be taken into 

account. The relative error ��� has a negative maximum ���U as well as error ���. Now 

substituting (19) in (16), (20) in (18), and (12) in (17), we get the expressions ������, 

��8���, and ���U. Then we construct a system of two equations: 

W ������ + ���U = 0
��8���  ���U = 0. (21) 

The solution of this system will be exactly the values V� and V�:  

V� = 0.2488850264045049141514932689891160; (22) 

V� = 4.7784906374300229854731656491365516. (23) 

Moreover, when ,N = 0.75, which corresponds to the value of the magic constant 

D = 0x5F600000, (24) 

then the maximum relative errors are equal 

�����X = 6.50209 ∙ 10�K,   ������ =  6.501887 ∙ 10�K. (25) 

4. Experimental results 

Because of numerical discretization and rounding errors, the relative errors (25)  

for type float in practice are not achievable. In this situation, the parameters  

of the algorithm may be adjusted to minimize the error. For example, modified values 

V� = 0.24888471;   V� = 4.7784891 (26) 

with the same constant D give errors �����X = 6.502244 ∙ 10�K, ������ =
 6.502372 ∙ 10�K which correspond to 10.59 correct bits of the result. 

 

However, our experimental results in the neighborhood of values (22)-(24) show that 

the best accuracy can be achieved in practice for the following values of parameters: 

V� = 0.248884737; 
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V� = 4.778488636; (27) 

D = 0x5F5FFFF8. 

 

Then the algorithm with one iteration for C++ has the form: 

 
1. float InvSqrt31(float x){ 
2.   int i = *(int*)&x; 
3.   i = 0x5f5ffff8 - (i >> 1); 
4.   float y = *(float*)&i; 
5.   y = 0.248884737f*y*(4.778488636f - x*y*y); 
6.   return y; 
7. } 

 

The maximum values of the relative errors of the algorithm are 

�����X = 6.501923 ∙ 10�K,   ������ =  6.502141 ∙ 10�K. (28) 

The graph of the relative errors of the algorithm InvSqrt31 is given below. 

 

Figure 2. The graph of the relative errors of the InvSqrt31 algorithm for �()1,4% 

 

The given algorithm has four floating-point multiplications. Compared with the best-

known algorithm [9], the maximum error is reduced by 26% (see also Fig. 1)  

with the same number of multiplications.
 

 

By adding a second Newton-Raphson iteration, we obtain the following results: 

 
1. float InvSqrt32(float x){ 
2.   int i = *(int*)&x; 
3.   i = 0x5f5ffff8 - (i >> 1); 
4.   float y = *(float*)&i; 
5.   y = 0.248884737f*y*(4.778488636f - x*y*y); 
6.   float c = x*y; 
7.   c = fmaf(y, -c, 1.00000065f); 
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8.   y = fmaf(y, 0.5f*c, y); 
9.   return y; 
10. } 

 

The new iteration (lines from 6 to 8) is written with fused multiply-add functions 

(fmaf) to improve the accuracy of the algorithm. InvSqrt32 function also contains one 

additional parameter. 

 

The maximum values of the relative errors of this algorithm are 

�����X = 3.687961 ∙ 10�&,   ������ =  4.086946 ∙ 10�&. (29) 

Here, in comparison with the best-known algorithm [9], the maximum errors are 

reduced by 44.5%. The accuracy of the algorithm is 21.22 correct bits.
 

 

It is still possible to improve the accuracy if you use the Householder formula [3] in 

the second iteration. Then we get the following algorithm: 

 
1. float InvSqrt33(float x){ 
2.   int i = *(int*)&x; 
3.   i = 0x5f5ffff8 - (i >> 1); 
4.   float y = *(float*)&i; 
5.   y = 0.248884737f*y*(4.778488636f - x*y*y); 
6.   float c = x*y; 
7.   float r = fmaf(y, -c, 1.0f); 
8.   c = fmaf(0.375f, r, 0.5f); 
9.   r = r*c; 
10.   y = fmaf(y, r, y); 
11.   return y; 
12. } 

 

This algorithm has nine floating-point multiplication operations. The maximum 

values of the relative errors of the algorithm are 

�����X = 8.958924 ∙ 10�L,   ������ =  8.776532 ∙ 10�L (30) 

which correspond to 23.41 correct bits. Compared with the algorithm described in [9], 

the error in InvSqrt33 was reduced by a factor of 8.24. 

 

Based on the formulas given in [3], one can construct an algorithm that also has nine 

multiplications. However, the maximum relative errors of our InvSqrt33 algorithm 

will be 2.44 times less (twice less if the original algorithm uses functions fmaf). 

5. Conclusions 

To conclude, a few modifications of the FISR algorithm with a magic constant were 

proposed in this paper. The purpose of these algorithms is to calculate the inverse 

square root for floating-point numbers in the format of IEEE 754 standard. It should 

be noted that only normalized numbers of type float were considered in the paper. 

However, other versions of the algorithms for higher precision data types such as 

double can also be easily constructed. 
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The considered algorithms can be effectively used on platforms that support floating-

point arithmetic but without native hardware implementation of inverse square root 

or square root functions. In many cases, these algorithms will be also faster than 

calling sqrtf function from the cmath C++ library. A vivid example of such a device 

is ESP-WROOM-32 microcontroller [15]. In addition, such algorithms may be 

implemented on modern FPGAs [16] with single precision floating-point blocks for 

addition, multiplication, and fused multiply-add operation. 
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