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Streszczenie: Artykuł dotyczy Analizy Głównych Składowych (ang. PCA - Principle 

Component Analysis). Głownym celem jest omówienie oraz przedstawienie przykładowego 

zastosowania algorytmu obliczeniowego metody PCA. Tak więc: opisano iteracyjny algorytm 

obliczania PCA oraz przedstawiono przykład zastosowania w grafice komputerowej. Główne 

obszary cyfrowego przetwarzania informacji to: przetwarzanie obrazów, kompresja, synteza, 

rozpoznawanie, identyfikacja. Przedstawiono przykład przejścia z modelu RGB na model 

trójskładnikowy. W artykule przedstawiono szczegółową implementację metody PCA do 

przetwarzania obrazów w Pythonie. 
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PROCESSING OF DIGITAL INFORMATION USING THE 

PRINCIPLE COMPONENT ANALYSIS 

Summary: The article is devoted to the Principle Component Analysis (PCA). The purpose of 

the article is to give the reader some information on the computational algorithm of the PCA 

method and its application for a concrete example. An iterative algorithm for calculating the 

PCA is described; an example of the use of the Principle Component Analysis in the field of 

computer graphics is given. Traditionally, the main areas of digital information processing are 

image-processing (compression, synthesis, recognition, identification). An example of the 

optimal transition from the RGB model to the optimal three-component model is given. The 

article gives a detailed implementation of the PCA method for image processing in Python. 
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1. Introduction 

The principal component analysis is the one of the main way to reduce data dimension 

with loss of the minimum quantity information, developed by Karl Pearson in 1901. 

Basically, it is applied in many areas, such as: pattern recognition, data visualization, 

image and video compression, image noise reduction, video indexing, bioinformatics 

and even social sciences [1-5].  Sometimes the PCA method calls the Hotelling 

transform (the Karhunen-Loeve Transform KLT) (see, for example, [1-4]). 

Recently, approaches that work with images as an array of features, each of which 

reflects the value of one pixel of the image (for example, the brightness of a single 

pixel), have become widespread. Since the vector of each image has a sufficiently 

high dimension, the task of processing a large number of images is not trivial. Most 

image analysis systems are based on methods that reduce the dimensionality of 

images. The problem of reducing the dimension is also important because the 

complexity of most algorithms increases exponentially with increasing dimension of 

the problem. Here one of the most common image reduction techniques is PCA. 

The idea of using the PCA for solving the image processing (recognition, compression 

etc) problem is that the image can be represented as a linear combination of the 

eigenvectors of the covariance matrix. The eigenvectors have the same dimension as 

the image itself, but are linearly independent, which allows you to accurately 

reconstruct the image. Eigenvalues determine the degree of contribution of each 

eigenvector to image reconstruction. 

The main components are called eigenvectors with the largest eigenvalues. Each 

image can be described by a weighted combination of principal components. Thus, 

for each image, it is enough to store only a set of weighting factors (main factors), but 

each factor already reflects not a single pixel, but a group of pixels, which can be 

represented as a picture. 

Usually, the PCA method is applied for the solution of the image recognition problem. 

It includes the following steps: a) normalization of the original image, b) calculation 

of the principal components; c) classification of images in a reduced space (clustering, 

neural network etc.). The recognition process consists in comparing the main factors 

of the desired image with the main factors of all other images. It is assumed that 

images of faces corresponding to one person are grouped into clusters in the image 

space. The result of the search are those images that have the smallest distance to the 

desired image. 

Here we analyze another problem of image processing. Namely, image compression 

which is based on the PCA method. For this purpose we develop a modification of the 

method and apply it for the RGB image model.  

2. The main idea of PCA 

Let’s consider the basic steps of the PCA method. At the beginning we will find the 

constant �, which in the best way describing input data  

���� = ∑��	
 ��� − ��
 → ���� . 
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For finding of the minimum we will equate the derivative to zero and find value � 

delivering the minimum 

�
�� ���� = −2 ∑��	
 ��� − �� = 0 ⇒ ∑��	
 � = ∑��	
 �� ⇒ �� = ∑��	
 �� ⇒
� = 


� ∑��	
 �� . 
Furthermore, we will carry out mean-centering, that is, we can redefine original values 

as follows ���� = ���� − �, i.e from each value xi the mean � is subtracted. It is clear, 

that new data have the average equal to zero. 

��� − ����� = ���� − ���� = 0.  
As a matter of fact, we made parallel translation in the existing coordinate system. 

In what follows we assume that input data is centered. Not to mention that, we are 

going to find the most faithful representation of data  = !�
, . . . , ��# in some W 

subspace which has dimension k <n. 

Let !$
, . . . , $%# be orthonormal basis of W. Any vector from W can be written in 

the form of linear combination of basis vectors, therefore for �
 it is possible to 

determine vector in the following form ∑%�	
 &
,�$�. The error between them is 

calculated as follows  

�
 = ‖�
 − (
%

�	

&
,�$�‖

 = ⟨�
 − (

%

�	

&
,�$�, �
 − (

%

�	

&
,�$�⟩. 

To find the integral error, we need to sum the quantities errors over all �+, so the total 

error is 

��$
, . . . , $% , &
,
, . . . , &�,%�⏟-�%����. = ∑�+	
 �+
 = ∑�+	
 ‖�+ − ∑%�	
 &+,�$�‖

. 
 (1) 

 

Figure. 1. Vector error recovery illustration 

To minimize the error, it is necessary to calculate the partial derivative of an above 

mention function with respect to the coefficients and consider restrictions for 

orthogonality !$
, . . . , $%#. At the beginning we will simplify the expression (equation) 

(1) 
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��$
, . . . , $%, &
,
, . . . , &�,%� = (
�

+	

‖�+ − (

%

�	

&+,�$�‖



= (
�

+	

‖�+‖

 − 2 (

�

+	

�+/ (

%

�	

&+,�$� + (

�

+	

(

%

�	

&+,�
 = 

 ∑�+	
 ‖�+‖

 − 2 ∑�+	
 ∑%�	
 &+,��+/$� + ∑�+	
 ∑%�	
 &+,�
 . 
Then 

2
2&3,�

��$
, . . . , $%, &
,
, . . . , &�,%� = −2�3/ $� + 2&3,� . 
The necessary and sufficient condition for the extremum will take the following form 

−2�3/ $� + 2&3,� = 0 ⇒ &3,� = �3/ $� . 
Thus, the error (1) will be described in the form 

 ��$
, . . . , $%� = ∑�+	
 ‖�+‖

 − 2 ∑�+	
 ∑%�	
 ��+/$���+/$� +
∑�+	
 ∑%�	
 ��+/$��
. 
After simplifying that equation, we receive 

��$
, . . . , $%� = ∑�+	
 ‖�+‖

 − ∑�+	
 ∑%�	
 ��+/$��
.(2) 

Taking into account that ⟨4, 5⟩ = 4/5 and ⟨5, 4⟩ = ⟨4, 5⟩,we obtain 

�4/5�
 = �4/5��4/5� = �5/4��4/5� = 5/�44/�5, 

therefore,  

��$
, . . . , $%� = ∑�+	
 ‖�+‖

 − ∑%�	
 $�/ 6∑�+	
 ��+�+/�7 $� = ∑�+	
 ‖�+‖

 −
∑%�	
 $�/8$� , 
where 8 = ∑�+	
 ��+�+/�. is the covariation matrix. 

Next will be the minimization ��$
, . . . , $%� = ∑�+	
 ‖�+‖

 − ∑%�	
 $�/8$� under 

the condition $�/$� = 1 for all i. Using the method of indefinite Lagrange multipliers, 

we enter multipliers :
, . . . , :%and, noticing that ∑�+	
 ‖�+‖

 ≡ <=�>? Then we can 

describe the objective function  

@�$
, . . . , $%� = (
%

�	

$�/8$� − (

%

�	

:��$�/$� − 1�. 

It is worth pointing out that 
�

�A ��/�� = �
�A ⟨�, �⟩ = 2� and if A is a symmetric 

matrix, then 
�

�A ��/B�� = 2B�, as the result we get, 

C
C�D @�$
, . . . , $%� = 28$3 − 2:3$3 = 0, 
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that is, 8$3 = :3$3. Thus, it is necessary to find the solution of the equation  

�8 − :E�$ = 0 (here E- an identity matrix) that determine :3 as eigenvalues and $3 

as eigenvectors of the covariation matrix of S.  

In this case, the error takes the following form 

 ��$
, . . . , $%� = ∑�+	
 ‖�+‖

 − ∑%�	
 :�‖$�‖

 = ∑�+	
 ‖�+‖

 − ∑%�	
 :�. (3) 

Minimization (3) consists in the choice k of the greatest eigenvalues and its 

corresponding eigenvectors of covariance matrix S. The bigger eigenvalue of the 

matrix S gives the big variation in the direction to the corresponding eigenvector. This 

result can be reformulated as follows – the projection X on the k - dimension subspace 

provides the greatest variation. Thus, the PCA can be treated as follows - we take 

orthogonal basis and rotate it on one of the directions as long as we do not receive the 

maximum variation. We fix this direction and we rotate the others, until we find the 

second direction yet and so on[5-6]. 

Let !$
, . . . , $�# all eigenvectors of S matrix be ordered in respect to the corresponding 

eigenvalue, then for any  

 �� = ∑�+	
 &�,+$+ = &�,
$
+. . . +&�,%$%⏟FGGH�I�3FJ��� +
&�,%K
$%K
+. . . +&�,�$�⏞�HH�H  

The coefficient &3,� = �3/ $� are the coordinates of the main components, for the 

greater value k gives the best approximation. At the same time, the main components 

are ordered according to the importance, more important at the beginning and less 

important at the end. 

Let's give the algorithm of PCA. 

Let input (original) data  = !�
M, . . . , ��M#, where each of these vectors ��M has 

dimension of N 

- Let's find the average � = 

� ∑��	
 ��M. 

- Let's subtract the average from each vector �� = ��M − �. 

- Let's find the covariation matrix 8 = ∑�+	
 �+�+/ . 
- Let's calculate eigenvectors !$
, . . . , $%#, corresponding k to the greatest 

eigenvalues of S. 

- Let !$
, . . . , $%# form the matrix � = N$
. . . $%O. 
- Then the closest approximation to x is P = �/�. 

Let's review the example. 

The set of data  M���
M, Q
M�, . . . , ��RM, QRM�� is determined by the table: 

Table 1. Input data 

x 1 2 3 4 5 6 7 8 

y 2 3 2 4 4 7 6 7 
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Figure 2. Input data 

Let's find mean value � = �4.5,4.375 �, then after centering data  will take the form 

Table 2. The centered data 

x - 3.5 - 2.5 - 1.5 - 0.5 0.5 1.5 2.5 3.5 

y 
-

2.38 

-

1.38 

-

2.38 

-

0.38 

-

0.38 
2.63 1.63 2.63 

 

 
 

Figure 3. Parallel shift, combining the origin of coordinates  

with the mathematical expectation of input  data 

 

Then  

>
,
 = ⟨�, �⟩ = (
R

�	

���� = 42, 
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>
,
 = >
,
 = ⟨�, Q⟩ = (
R

�	

��Q� = 32,5, 

>
,
 = ⟨Q, Q⟩ = (
R

�	

Q�Q� = 29,875, 

and the covariation matrix can be written as follows 

8 = �>
,
 >
,
 >
,
 >
,
 � = �42 32,5 32,5 29,875 �. 

Solving the equation 

 |42 − : 32,5 32,5 29,875 − : | = 0 ⇔ �42 − :��29,875 − :� − �32,5�
 = 0 

we receive eigenvalues :
 = 68,99810959, :
 = 2,876890413. 
For determining the eigenvectors $
 = �$
,
, $
,
�/

 and $
 = �$
,
, $
,
�/
 let's find 

any uncommon solution of the following system 

!�>
,
 − :
�$
,
 + >
,
$
,
 = 0, >
,
$
,
 + �>
,
 − :
�$
,
 = 0,  
and, respectively, for second eigenvalues 

!�>
,
 − :
�$
,
 + >
,
$
,
 = 0, >
,
$
,
 + �>
,
 − :
�$
,
 = 0.  
Under the eigenvalue : in the both system of equations the main determinant is 

equal zero. So in both cases the equations are linearly dependent. For finding the 

solutions it is necessary taking any nonzero values for first unknown and the second 

unknown determines from the one of equation respectively to each system of 

equations. Therefore for the example $
,
 = 1, $
,
 = 0,8307110643 and $
,,
 =
1, $
,
 = −1,203787987.  

Thus, the vector $
 = corresponds to the eigenvalue :
 = 68.99810959, and the 

value :
 = 2.876890413 corresponds the vector $
 = Bigger eigenvalue 

corresponds greater principal direction. After normalizing eigenvectors to unit length, 

we get $
 = and $
 = 

It is necessary to determine the first main component P
 = $
/  (table 3).  

Table 3. The first main component 

\]- 

4,209

9 

- 

2,80

16 

- 

2,67

142 

- 

0,62

43 

0,144

98 

2,831

17 

2,961

39 

4,36

96 

Respectively, the second main component P
 = $
/  will take the form as included 

within table 4 

Table 4. The second main component 

\^ - 

0,41 

- 

0,539

8 

0,868

4 

- 

0,031 

0,60

8 

- 

1,06 

0,3

48 

0,21

73 
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Let's outline that for receiving a result for input data (uncentered) it is necessary to 

add the corresponding mean value. 

The recovery of data referring to first main component (that is projections of input 

data to principal direction) will take the form �� = $
,
P
,� + �
, Q� = $
.
P
,� + �
 

(table 3) 

Table 5. The input data recovered on the first main the component 

_, `ab
× \]+ d, e 

1,26

17 

2,3

45 

2,4

45 

4,0

2 

4,6

12 

6,6

78 

6,7

78 

7,8

61 

_, afb
× \]+ d, f`e

1,68

49 

2,5

85 

2,6

68 

3,9

76 

4,4

68 

6,1

84 

6,2

67 

7,1

67 

 

 
Figure 4. The data presentation of the first main component 

3. An iteration algorithm for computing the principal components  

If The described above method of determining the principal component is rather 

resource-intensive and unstable, especially if eigenvalues of the matrix are close to 

zero. 

Basically, more effective is use of the iterative method of principal component. To 

achieve this aim, we can consider the task (1) from a different point of view[7-8]. 

For i=1 case, the task (1) comes down to definition referring to the first component 

$
, which recovers all input data !�
, . . . , ��# the most efficiently. 

��$
, &
,
, . . . , &�,
� = ∑�+	
 ‖�+ − &+,
$
‖

 → ��� (4) 
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on all $
 and g&�,
h�	

�

under the condition ∑��	
 &�,

 = 1. 
If g&~�,
h�	


�
 and $~
 there is the solution of this task and j�+ = �+ − &~+,
$~
 - the 

error of data recovery based on the first main component, solving the following 

problem 

(
�

+	

‖j�+ − &+,
$
‖

 → ��� 

on all $
 and g&�,
h�	

�

 under the condition ∑��	
 &�,

 = 1, we receive the second 

main component $~
 and corresponding vector g&~�,
h�	

�

 etc[9]. 

At fixed g&�,
h�	

�

 the problem (4) can be solved by the least-squares method. Knowing 

that the objective function represents the quadratic functional, the necessary and 

sufficient condition of the extremum are identical. Thus, the solution of the task comes 

down to solving to an equation 

 
C

C�k ��$
, &
,
, . . . , &�,
� = −2 ∑�+	
 ��+ − &+,
$
�&+,
 = −2�∑�+	
 �+&+,
 −
∑�+	
 &+,

 $
�. 

From here we receive 

$
 = ∑�+	
 �+&+,

∑�+	
 &+,

 , 

considering the rationing condition unit, that is ∑��	
 &�,

 = 1, we get 

$
 = ∑�+	
 �+&+,
. 

We can take the following step proceeding on the assumption that in the task (4) we 

know the component $
 . Also, it is required to find the extremum on g&�,
h�	

�

 

C
Clm,k ��$
, &
,
, . . . , &�,
� = −2��n − &n,
$
�$
 = −2�⟨�n , $
⟩ − &n,
⟨$
, $
⟩� = 0, 

that is 

&n,
 = ⟨�n , $
⟩
⟨$
, $
⟩, 

where, as usual ⟨�, Q⟩is scalar product of vectors x and y. 

Further, including known g&�,
h�	

�

, we repeat all process. Moreover, there will be no 

stabilization of the error yet. After getting $
 let's consider the first main component 

$~
. Then j�+ = �+ − &~+,
$~
 - error recovery of data of the first main component. 

Applying this algorithm to the error recovery j�+, we find the second main component 

$
 together with coefficients &+,
, etc[10-12]. 

Let's give the algorithm of this method[13, 14]. 

At the beginning we center data, subtracting mean value from input data and further 

we consider that data are averagely equal to zero. 

1. Let's put number of iteration o = 1. 
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2. We choose starting values g&�,
n h�	

�

, for example, let all of them be equal among 

themselves, that is  &�,
n = 

√� , � = 1,2, . . . , �. 

3. We calculate $
n = ∑�+	
 �+&+,
n . 

4. Further we find q� = ⟨Ir,�km⟩
⟨�km,�km⟩, and, normalizing it to unit length, we receive

 &�,
nK
 = sr
t∑uvwk svx

. 
5. Next, we increase o = o + 1. 

6. We perform the inspection of stop criterion i.e., as stabilization of coefficients 

g&�,
n h�	

�

, stabilization main components $
n, or in advance check the set fixed 

number of iterations. If the condition of the repetitive process is not satisfied, then 

we pass to point 3. 

Let's illustrate the iteration scheme of search the principal components on the same 

example which is stated above. 

For already centered data (see table 2) we will give several iterations. So, let in the 

beginning o = 1 and &�,

 = 

√
 , � = 1,2. Calculating $
,+
 = &
,

 �+ + &
,

 Q+ , we 

receive (table 6) 

Table 6. First approximation the main component 

y]] - 

4.154

2 

- 

2,740 

- 

2,74

0 

- 

0,619 

0,0

88 

2,9

17 

2,9

17 

4,3

3 

Further we will calculate q� = ⟨Ir,�kk⟩
⟨�kk,�kk⟩ = �0.7697,0.64447� and after the 

normalization we receive  

 &�,

 = sr
tskxKsxx

= �0.7667,0.64343�. 

Thus, after the first iteration approximate values of input data will be equal �~� =
&
,

 $
,�
 + �
, Q~� = &
,

 $
,�
 + �
 (compare results with table 5): 

 

Table 7. The input data recovered on first approximation main components 

z~ 1,3

15 

2,3

99 

2,3

99 

4,0

26 

4,5

68 

6,7

36 

6,7

36 

7,8

2 

{~ 1,7

02 

2,6

12 

2,6

12 

3,9

77 

4,4

32 

6,2

52 

6,2

52 

7,1

72 

 

After ten iterations, we receive z~| = }],]]] y],|]_ + ~], {~| = }^,]]] y],|]_ + ~^( 
compare results with table 5): 

 



 Processing of digital information using the principle component analysis 319 

Table 8. The input data recovered on the tenth iteration of approximating main 

components 

z~1,26

2 

2,34

5 

2,44

5 

4,02 4,61

2 

6,67

8 

6,7

78 

7,86

1 

{~1,68

5 

2,58

5 

2,66

8 

3,97

6 

4,46

8 

6,18

4 

6,26

7 

7,16

7 

 

Figure 5. Data presentation recovered on the tenth iteration of approximating main 

components  

4. Optimum transition from the RGB model to optimum three-
component model 

Let's give one example of use of the PCA in such area as computer graphics. Here 

outlining the transfer of the image from space of equal color characteristics in space 

of unequal is vital. Any images are visualized with use of mixing equal color 

component - red, green and blue making - the RGB model. As unequal color the 

component is used, as a rule, respectively, too three by components – value of 

illumination (the luminescent component), the characteristic of warm colors and the 

characteristic of cold tones. The avail of unequal color component is used for 

compression of images and video flows, applying to each of unequal the component 

the method of compression (see, for example, [14]). 

It is possible to approach the problem of unequal color space cration from a 

different perspective, proceeding with the maximum informational content of 

everyone components. Let's apply the method of principal component to receiving 

unequal three-component model of the root-mean-square error of recovery of the 

initial image, optimum from the point of view of minimization. That is, the first of 
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their received color the component will carry the most information about the image 

among all received color components, and the second will contain the most great 

information among the remaining.  

Thus, in our terminology, the task (2.1) will take the form 

‖� − ∑��	
 &H,�$�‖

 + ‖� − ∑��	
 &�,�$�‖

 + ‖� − ∑��	
 &�,�$�‖

 → ���, 

where the minimum undertakes on all &H,� , &�,� , &�,� and $� i=1,2,3. 

As data we can consider the test image Lena. 

 

 

Figure 6. Test image Lena 

Applying the principal components method, we receive  

 �� � � � =
�  0.767785     0.45439      0.4517034��−0.6164395   0.716085    0.3274513�   . 
Here, in the first column of the matrix, there are coefficients &H,
, &H,
, &H,�, in the 

second - &�,
, &�,
, &�,� and in the third -&�,
, &�,
, &�,�. Then recovery of the test 

image after one component can be written down as follows  

 Ri, j = 0.767785 Yi, j, 

 Gi, j =  0.45439 Yi, j, 

 Bi, j = 0.4517034 Yi, j, 

where Yi, j – values of the first main components $
, corresponding to pixel with 

coordinates (i, j).  
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Also, we can compress an image using PCA without a significant loss of its variance. 

The earlier in this paragraph we have demonstrated using PCA to compress high 

dimensional data to lower dimensional data. We wanted to briefly mention that PCA 

can also take the compressed representation of the data (lower dimensional data) back 

to an approximation of the original high dimensional data. If you are interested in the 

code that produces the image in fig. 7, check out example code in python below. 

 
# Image reconstruction from compressed representation 

from sklearn.decomposition import PCA 

from pylab import * 

from skimage import data, io, color 

import matplotlib.pyplot as plt 

from matplotlib import gridspec 

file = "Lenna.png" 

lenna = io.imread(file, as_grey=True) 

gs = gridspec.GridSpec(2, 2, width_ratios=[1, 1]) 

fig = plt.figure(figsize=(8, 8)) 

fig.subplots_adjust(hspace=0.4, wspace=0.4) 

plt.subplot(gs[0]) 

io.imshow(lenna) 

xlabel('Original Image') 

for i in range(1, 4): 

    n_comp = 5 ** i 

    pca = PCA(n_components=n_comp) 

    pca.fit(lenna) 

    lenna_pca = pca.fit_transform(lenna) 

    lenna_restored = pca.inverse_transform(lenna_pca) 

    plt.subplot(gs[i]) 

    io.imshow(lenna_restored) 

    xlabel('Restored image n_components = %s' % n_comp) 

    print('Variance retained %s %%' % ( 

       (1 - sum(pca.explained_variance_ratio_) 

        / size(pca.explained_variance_ratio_)) * 100)) 

    print('Compression Ratio %s %%' % (float(size(lenna_pca)) 

/ size(lenna) * 100)) 

show() 
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Figure 7. The image Lena in original state and restored on the 5, 25, 125 

components 

5. Conclusion 

The Method of Main Components is proposed as one of the methods of digital signal 

processing in a wide variety of fields, primarily communication and control systems, 

radio engineering and electronics, acoustics, television, measuring technology. The 

main areas of digital signal processing are sound and image processing (compression, 

synthesis, recognition, identification). So, in this article we touches upon the issue of  

of signal processing enhancement, oriented to the construction of high-speed 

algorithms and gives PCA algorithm in details in Python. As noted above, the results 

of PCA depend on the scaling of the variables. A scale-invariant form of PCA has 

been developed. The applicability of PCA is limited by certain assumptions made in 

its derivation. The other limitation is the mean-removal process before constructing 

the covariance matrix for PCA. 
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