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METODY I ALGORYTMY KLASYFIKACJI DANYCH 

Streszczenie: W pierwszej części artykułu przeprowadzono szczegółowe badanie analizy 

dyskryminacyjnej, opartej na koncepcji odległości między elementami oraz na kryterium 

bliskości skonstruowanej na podstawie obliczenia cosinusu kąta między dwoma wektorami. 

Również wszystkie konstrukcje bazujące na podanym przykładzie klasyfikacji tekstów.  

W drugiej części artykułu zbadano metodę wektorów wsparcia (SVM - Support Vector 

Machines), zawartą w zbiorze algorytmów nazywanych "nauczaniem nadzorowanym". Są one 

skutecznie wykorzystywane także w problemach klasyfikacji jako metoda analizy 

dyskryminacyjnej. W związku z tym w artykule szczegółowo omówiono problem klasyfikacji 

danych. 

 

Słowa kluczowe: klasyfikacja danych, algorytmy genetyczne, wektory wspierające, dane, 
przetwarzanie wstępne, funkcje dyskryminacyjne 

METHODS AND ALGORITHMS OF DATA CLASSIFICATION 

Summary: In the first part of the article conducted a detailed study of the discriminant analysis, 

based on the concept of distance between elements, and on the criterion of proximity 

constructed on calculating a cosine of the angle between two vectors. Also, all constructions 

relying on the example of texts classification provided. In the second part of the article 

investigated the method of support vectors (SVM - Support Vector Machines), included in the 

set of algorithms called as "supervised learning". They are effectively used in problems of 

classification as a method of discriminant analysis too. Thus, the article examined in detail the 

problem of data classification. 

 
Keywords: data classification, genetic algorithms, support vectors, data, preprocessing, 
discriminant functions 

1. Using of genetic algorithms for creation of the vector classifiers 

In this paragraph we will consider the discriminatory analysis based not on the concept 

of distance between elements, and on the criterion of proximity constructed on 
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calculating a cosine of the angle between two vectors. We are going to provide all 

constructions relying on the example of texts classification [1-5]. 

The first step consists in preprocessing of data – creating sets of statistics for the 

available classes. For the creation of the set of statistics all sets of word forms ��,� = 0,..., � − 1  are consistently processed, belonging to one class  � = {��}������ . On 

the set of word forms of each processed text νb  the set of the unique (not repeating) 

word forms and their counters is under construction  - ���� , ���� �� = 0,..., �� − 1�. 

Here ��- quantity of unique word forms for the text ��. After that data for each 

document separately are normalized in the following form 

���� = ����∑ �� ��!"�#$ %& �� = 0,..., �� − 1�. 

Then, we arrange all words for each document in the same order (the word order is 

not essential, the main thing that words in each of structures  ���� , ������ = 0,..., �� − 1� went in the same order) and we find the sum of all vectors ����� = ∑ �������'��  �� = 0,..., ����� (where N(B) – a quantity of unique word forms 

for the class B in general) also we normalize it by its unit as follows ������ = ���(��∑ �� �(��!"�)� %& . 

For the received central point of the class we create the set of statistics, writing down 

in it values *�����, ������+ �� = 0,..., �����. 

For creating the central vector of classes {�,},��-��  where each class �,  is described 

by the central vector �����,�, �����,���� = 0,..., ���,��, it is necessary to find their 

sum, having summed up all coordinates from all vectors for each value of the word 

form, that is for the word form ω we receive the coordinate ��.� = ∑ {�����,�|.���,� = .,      � = 0,...���,�}-��,�� . 

Therefore, it is necessary to make the list of unique word forms on all central vectors 

of classes {�,},��-�� and to sum up their coordinates. The set consisting their unique 

(not repeating) word forms and their coordinates can be result 0��*{�,},��-��+, ��*{�,},��-��+1 �� = 0,..., ��{�,},��-����, 

where ��{�,},��-��� is a quantity of unique word forms of the set of classes {�,},��-��. 

It is necessary to normalize the received coordinates 

����{�,},��-��� = ���{(2}2%&3#$�
4∑ �� �{(2}2%&3#$��!"�{)2}2%&3#$� %&

, 

and, the received vector 0��*{�,},��-��+, �5�*{�,},��-��+1 �� = 0,..., ��{�,},��-���� can be 

the central vector of the set {�,},��-��.  

Ideally created classification of the vector method is such set of classes {�,},��-��, for 

which the following condition is satisfied: ∀� ∈ �, , 8 = 0,..., 9 − 1 the inequality 

takes place  
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⟨n��b�, n��B>�⟩ < ⟨n��b�, n��BA�⟩,   ν ≠ μ.  (1) 

Let's consider the vector Λ (control vector) of dimension ���,�, which coordinates 

accept only the one or the other admissible values (zero) 

λ� = F01 . 

Through Λb let's designate the direct product of vectors Λ and b, that is G� = �H�������, H�������,..., HI�(2���I�(2�����. 

The control Λ let's call admissible on the class �, = {�J}J�����, if the condition (2) is 

satisfied  ⟨G��������J�, G��������,�⟩ < ⟨G��������J�, ������⟩, � ≠ 8, K = 0,1,..., � − 1. (2) 

Admissible control vector Λ for which this inequality (2) and at the same time which 

is fulfilling the condition ∑ �G�J�L → max���J��  , is called the optimum. 

If for � ≠ 8 the set of admissible controls is degenerated, the class �, = {�J}J����� is 

defined incorrectly, i.e. it is inseparable from the class ��  . 

The problem of finding the optimum control by classical methods is rather difficult 

therefore we will apply genetic algorithms to its decision [1]). 

For that matter, the single-point crossing over (single-point crossover) is used. It is 

modeled as follows: Let there are two parent individuals with chromosomes N ={O� , � ∈ {0,..., P}} and Q = {R� , � ∈ {0,..., P}}. In a random way the point in the 

chromosome is defined (discontinuity point) in which both chromosomes are divided 

into two parts and exchange them. After processing reproduction we can get mutation. 

It is reached because accidentally chosen gene in the chromosome changes. 

 

Figure 1. The chart of reduction of dimension of categories when using genetic 

algorithms 

For creating new population, we used the elite selection. Intermediate population 

which includes both parents, and their descendants are created. Members of this 

population are evaluated, and behind that N of the best get out of them (suitable) 

which will enter the next generation. 
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The result of applicating the genetic algorithm to the problem of reducing class 

dimension, is given in the figure 1. 

Let's notice that the vector method as a criterion of quality uses the size of the scalar 

product of basis vectors, thus, the class of unit vectors (documents) is limited on the 

sphere by the circle with the center at the end of the central vector of the class. As 

sphere cuts on the circle cannot densely pack all surface of the single sphere, there is 

the point set (basis vectors) which cannot essentially get to one class. Thus, there is 

the need to break the point set on the single sphere so that elements of this splitting 

densely packed all surface of the single sphere, that is allowed to classify any 

document unambiguously.  

For any center of system {A} it is possible to specify area of space which all points 

are closer to this center, than to any other center of system. Such area is called the 

Voronoi polyhedron or Voronoi diagram. The Voronoi diagram usually carry to the 

polyhedron also its outer surface. In three-dimensional space the Voronoi diagram for 

any i center of systems {A} is the convex polyhedron, in two-dimensional space it is 

the convex polygon. Formally Voronoi polygons S�  in TL are defined as follows: S� = {O ∈ TL: V�O, O�� < V*O, O'+ ∀W ≠ �}. 

where d is a distance function. 

 

Creating an approximation relies on fundamental property for randomly selected n set 

points on the plane S. For any node from n on the plane, there is the great number of 

natural neighbors N. The concept of natural neighbors is closely connected with 

splitting the Voronoi diagram cells. For the nonempty Voronoi cell V(R), where R ⊂ 

S the natural neighbors for a vertex of Delon’s triangles r ∈ R, are points incidental to 

V(R). 

The two-dimensional Voronoi polyhedron (polygon on the plane) is shown on the 

(Fig. 2). The lines Voronoi which generated edges at the polygon are called the 

forming lines and the relevant centers of system are the geometrical neighbors of this 

center A. Among geometrical neighbors (natural) we can distinguish two kinds of 

them. For the first kind - the bisecting point of a segment connecting it to the central 

node lies on the verge of the Voronoi polyhedron. For the second kind the bisection 

point is out of the edge and, therefore, out of the polyhedron. 

 

Figure 2. The Voronoi polyhedron (polygon) for the center A in two-dimensional 

system 
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Polyhedrons Voronoi, the systems constructed for each center , give the mosaic 

of polyhedrons - splitting Voronoi points (see Fig.3). Polyhedrons Voronoi systems 

 do not enter each other and fill the space, being adjacent on the whole edges. 

Splitting space into Voronoi polyhedrons unambiguously is defined by system  

and converse uniquely defines it. 

 

Figure 3. The Voronoi chart on the plane 

Using the design of Voronoi diagrams in relation to points on the multidimensional 

single sphere, we receive splitting all basis vectors of documents into natural classes. 

Borders of classes will be the hyper planes dividing spherical Voronoi polyhedrons. 

Points on the single sphere, which in relation to all hyperplanes limiting this class lie 

on the same side of sphere, as the central vector of this class, will belong to one class.  

Let classes of documents be checked for the splitting correctness X� and X,. For 

corresponding basis vector (the central vectors)  XY�, XY,,  we build the difference 

vector  Z⃗�,, = XY� − XY, = {�5����� − �5,����}  
and sum vector  \⃗�,, = �L �XY� + XY,� = �L {�5����� + �5,����}. 

The half-sum of vectors begin coordinates of this vector in number. Let's designate it 

through \�,,. Let's carry out through the point ^�,, the plane with the normal vector Z⃗�,,  Ω�,, = ⟨Z⃗�,, ⋅ �a − \�,,�⟩ = 0 .  (3) 

This plane splits classes. In order to the method correctly splits classes, it is 

necessary that all points (documents) of one class are on the one side of the planes, 

that is if � ∈ X�, then ⟨Z⃗�,, ⋅ �XY� − \�,,�⟩⟨Z⃗�,, ⋅ ��b − \�,,�⟩ ≥ 0. 

Points in which this condition is not satisfied need to be considered relating to 

belonging to category X,. 

{ }A

{ }A

{ }A
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For the solving this problem the following method can be taken into account. Let's 

consider categories X� and X,. Let's split them by the plane (3), and all points lying 

on the one side, we will collect in new two categories X�∗ and X,∗.  

Let 

V��, Ω�,,� = |⟨Z⃗�,, ⋅ �� − \�,,�⟩||Z⃗�,,|  

be a distance from the point B ={bi} to the plane Ω�,, . 

If the condition is satisfied (that is, after cutting off of data both categories are 

removed from each other) 

eV�X�∗, Ω�,,� − V�X�, Ω�,,� > 0,V�X,∗, Ω�,,� − V�X, , Ω�,,� > 0, 
that categories X� and X, have nonempty crossing Xg, which can be defined as 

follows, � ∈ Xg if � ∈ X� and at the same time  ⟨Z⃗�,, ⋅ �XY� − \�,,�⟩⟨Z⃗�,, ⋅ ��b − \�,,�⟩ < 0, 

or, if � ∈ X,,  ⟨Z⃗�,, ⋅ �XY, − \�,,�⟩⟨Z⃗�,, ⋅ ��b − \�,,�⟩ < 0. 

It is natural that the problem of classes dimension reduction is also urgent for the 

method constructed on Voronoi diagrams. 

Comparative analysis of application of different discriminatory analyses to test base 

of documents [2] is given in the following figures (see fig.4; 5; 6).  

 

Figure 4. The result of applicating the algorithm of Bayes 
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Figure 5. The result of applicating the vector algorithm 

  

Figure 6. The result of applicating the algorithm based on Voronoi diagrams 

Thus, for given test base on condition of hit in the class not less than 90% of 

documents, dimension of classes from 10% was succeeded to reduce to 50%. 

2. Support vector machines 

The method of support vectors (SVM) is included in the set of algorithms called as 

"supervised learning". They are effectively used in problems of classification. In 1963 

[6] proposed an algorithm which if the data are linearly separable then finds the 

maximal margin between the fixed boundary and the nearest points of each class. The 

next work by is the cornerstone of SVM [6-9]. SVM method belongs to family of 

linear qualifiers [10]. 

In the previous paragraph we considered the simplest discriminant functions realizing 

the linear qualifier (see Fig. 7). It can be written down in the form h�O� = �iO + ��, 

where  h�O� > 0 ⇒ O ∈ Class[1]and h�O� < 0 ⇒ O ∈ Class[2]. 
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Figure 7. Symmetric determinant functions 

Thus, the discriminant function is described by the equation ( ) 0.g x =  Distance 

between the point x and the point of dividing function h�O� = 0 is equal to 
|nopqn&|‖n‖ . 

 

Figure 8. The maximum dividing corridor 

Let xi lie on short circuit of border, that is |�iO� + ��| = 1 . Border width of the 

dividing margin, is chosen as wide as possible (see Fig. 8). Considering that short strip 

of border meets the condition|�iO� + ��| = 1 , then distance from xi to h�O� = 0 is  

|nopqn&|‖n‖ = �‖n‖,    (4)  

thus, width of the dividing strip is equal 
2

w
 (see Fig. 9).  



 Metody i algorytmy klasyfikacji danych 301 

 

Figure 9. Illustration of creating support vectors 

To exclude points from the dividing margin, we will write out the condition of 

belonging to classes 

s�iO� + �� ≥ 1        if  O�  belongs to  class  1 �iO� + �� ≤ −1     if  O�   belongs to class  2  
Let's enter the index function 

s u� =  1 if  O�   belongs to class 1 u� = −1 if O�   belongs to class 2  

Thus, the problem of estimating the dividing function generating the corridor of the 

greatest width is possible to write down as a problem of minimizing in the following 

form v��� = �L ‖�‖L → min  (5) 

under the condition u���iO� + ��� ≥ 1 for all i. 

As the objective function is a square function, so this task has the only one resolve. 

According to Kuhn-Tucker's theorem the condition (5) is equivalent to the following 

task P�w� = ∑ w� − �L ∑ ∑ w�w'u�u'O�xO'�'���������� → max                      (6) 

provided that w ≥ 0 for all i and ∑ w�u� = 0���� , where w = {w�,..., w�} are new 

variables. Let's rewrite ( )αL  in the matrix form 

P�w� = ∑ w����� − �L yw�⋮w�{x | yw�⋮w�{, 

Where coefficients of the matrix H are calculated as follows |�,' = u�u'O�xO' . 

The task P�w� → max is solved by methods of quadratic programming. 

After finding the optimum w = {w�,..., w�} for each i it is verified the conditions  



302 Olga VESELSKA, Oleksandr PETROV, Anton PETROV, Ruslana ZIUBINA  

- w� = 0 (it corresponds i is not a support vector); 

- w� ≠ 0 and u���iO� + �� − 1� = 0 (it corresponds i is a support vector); 

Then w from the ratio (4) can be found � = ∑ w�u�O�����  and the value w0 is 

calculated considering that for any w� > 0 and w�[u���iO� + ��� − 1] = 0 �� = �}� − �iO� . 
Then, at last, the discriminant function is received h�O� = �∑{w�u�O�  | O� ∈ ~}�xO + ��. 

Notice that summing is carried out not on all vectors but only on the set  S which 

represents the set of support vectors i.e. ~ = {O�|w� ≠ 0}.  

Unfortunately, the described above algorithm is implementable only for linearly 

separable sets In practice this sets are not met frequently. In 1995 [6-7, 10] proposed 

modified algorithm for solving the problem for nonlinear separable sets [10-12]. Let's 

give the modernization of the algorithm for the case of nonlinearly separable sets.  

In order to allow for misclassification in the model, it is entered additional variables 

iξ , which characterize the mistake size on each object of xi. In the objective function, 

the penalty for the aggregate error is introduced in the following form:  

� �L ‖�‖L + H ∑ ������    →    min,u���iO� + ��� ≥ 1 − �� ,   � = 1,..., �,�� ≥ 0,   � = 1,..., �,    �7� 
here λ is the parameter specifying the cost of misclassifications. It allows to govern 

the relation between maximizing width of the dividing strip and minimization of the 

aggregate error [12-13]. 

Penalty size ��for the corresponding object xi depends on the arrangement of the object 

in dividing strip. So, if xi lies on the opposite side of discriminant function, then the 

penalty size is �� > 1. If xi lies in the dividing strip, but on the same side of 

discriminant function as the class, then the corresponding weight can take  

a value 0 < �� < 1. For the ideal separable case the penalty size is taken as  �� < 0 

(see Fig. 8.4). 

 

Figure 10. Points to which penalties are applied 

Then the task (7) can be rewritten in the form below [14] 
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v��, ��,..., ��� = �L ‖�‖L + � ∑ ���� > 0�����  →  min , (8) 

that is in the way of minimization elements which do not represent the ideal case 

participate. Here  

���� > 0� = s1, �� > 0,
0, �� ≤ 0,  

when fulfilling conditions u���iO� + ��� ≥ 1 − �� and �� ≥ 0. In the formula 

8.5 the constant β is the weight considering the bandwidth. If β is not enough, 

then we allow to arrange relatively many elements in the imperfect position, that 

is, in the dividing strip. If β is big, then we demand existence of small quantity of 

elements in the imperfect position, that is, in the dividing strip. 

Unfortunately, in (8), the problem of minimization is rather difficult, in view of 

discontinuity ( )iI ξ . Instead we will consider a value minimization v��, ��,..., ��� = �L ‖�‖L + � ∑ ������   with restrictions for all i in the following 

form 

su���iO� + ��� ≥ 1 − ���� ≥ 0 . 

Using Kuhn-Tucker's theorem, from here we receive P�w� = ∑ w� − �L ∑ ∑ w�w'u�u'O�xO'�'������  ����  →  max  (9) 

Provided that 0 ≤ w� ≤ �, ∀� and ∑ w�u� = 0���� .  

From the ratio (7) we can find � = ∑ w�u�O����� . The value w0 it is also possible 

to find, considering that for all i  0 ≤ w� ≤ � and w�[u���iO� + ��� − 1] = 0. 

The other idea of the SVM method (in the case when a linear division of classes 

is impossible), is transition to space of bigger dimension in which such division 

is possible [10, 12, 15-16]). 

For solving the nonlinear classification problem by the linear qualifier, it is 

necessary: 

- to design data x in space of higher dimension by means of transformation  ϕ(x). 

- to find a symmetric discriminant function for data ϕ(x). 

- the received  nonlinear discriminant function can be written down in the 

following form h�O� = �i��O� + ��. 

The received symmetric discriminant function for two-dimensional data X can 

take a form: 

h �O���O�L�� = [�� ��] �O���O�L�� + ��. 

The one-dimensional discriminant function for nonlinear separable data using the 

function ϕ(x) = (x, x2) is written as follows: h�O� = ��O + �LOL + ��. 
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The example is shown on Fig. 8.5. For transferring data in space of higher 

dimension it is used so-called kernel functions.  
 

 ↓  ��O� = �O, OL� 

 

Figure 11. An example of linear division of sets upon transition to space of higher 

dimension 

Let's go back to written above (9) the extremum problem of the method of support 

vectors in the following form  P�w� = ∑ w� − �L ∑ ∑ w�w'u�u'O�xO'�'���������� → max . 

Let's notice that the optimization depends on the formula O�xO' . If we transfer xi to 

space of higher dimension using the display function ϕ(x), then it is necessary to 

calculate the similar formula in space of higher dimension ��O��x��O'�. 

The idea of the method consists that it is necessary to find kernel function 9�O� , O'� =��O��x��O'� and to maximize the following objective function P�w� = ∑ w� − �L ∑ ∑ w�w'u�u'9*O� , O'+�'���������� →  max. 

Let's review the new example and take kernel function in the form9�x,y� = �OxR�L. 

It is simple to find out the display ϕ(x) corresponding to the kernel function. 

9�x, y� = �Ox R�L = �[O��� O�L�] �R���R�L���L = �O���R��� + O�L�R�L��L = 

= �O���R����L + 2�O���R�����O�L�R�L�� + �O�L�R�L��L = = [�O����L, √2O���O�L�, �O�L��L][�R����L, √2R���R�L�, �R�L��L]x. 

Thus, the display function can be written in the following form  ��O� =[�O����L, √2O���O�L�, �O�L��L]. 
 

It is important to noticed that the choice of kernel function is rather difficult. 
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Let's review the example [8, 9].  

Class [1]: x1=[1,-1], x2=[-1,1]. 

Class [2]: x3=[1,1], x4=[-1,-1]. 

It is illustrated on Fig. 12. 

       

Figure 12. An example of linearly inseparable sets 

For creation of nonlinear discriminant function, we use kernel function in the 

following form 9�O� , O'� = �O�xO' + 1�L. 

The display function ϕ corresponding to the kernel function can be written as 

follows ��O� = [1, √2O���, √2O�L�, √2O���O�L�, �O����L, �O�L��L]. 
Further it is necessary to maximize the objective function 

P�w� = � w� − 12 � � w�w'u�u'�O�xO' + 1�L�
'��

�
���

�
��� → max 

with restrictions w� ≥ 0,  w� + wL − w� − w� = 0. 

Let's rewrite the task in the following form P�w� = ∑ w� − �� wx|w����  , 

where w = [w� wL w� w�]x and | = � 9 1 −1 −11 9 −1 −1−1 −1 9 1−1 −1 1 9 �. 

For finding the maximum, we can calculate the partial derivatives with regards to 

unknown parameters αi and equate zero these derivatives to zero. Then, we will find 

values of unknown on which the maximum of the objective function is reached. 
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��� P�w� = �1111� − � 9 1 −1 −11 9 −1 −1−1 −1 9 1−1 −1 1 9 � w = 0. 

Solving the system equations, we receive w� = wL = w� = w� = ��, and 

� = � w�u���O�� = 14 ���O�� + ��OL� − ��O�� − ��O����
��� = [0 0 0 −√2 0 0] 

and, at last, the nonlinear discriminant function can take the following form h�O� = ���O� = ∑ �����O����� = −√2�√2O���O�L�� = −2O���O�L� .  
The result is shown on Fig. 8. 

   

Figure 13. An example of linearly inseparable sets after using the kernel function 

In conclusion we give a few of the most widespread kernel functions used for division 

of classes: 

- The polynomial homogeneous kernel 9�O� , O'� = �O�xO'��. 

- The polynomial heterogeneous kernel 9�O� , O'� = �O�xO' + 1��. 

- The radial basis function (RBF kernel) 9�O� , O'� = exp�− ‖p��p ‖!L�! �. 

- The sigmoid kernel 9�O� , O'� = tanh*�O�xO' + 1�+ 

Conclusions 

Thus, the classification problem was considered in the article — a task in which there 

are many objects, divided in some way into classes as well as methods and algorithms 

for solving it. Algorithms are analyzed that are able to classify an arbitrary object from 

the original set. 
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