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SKOŚNO-SYMETRYCZNY STAN OBCIĄŻENIA POWŁOK 

CIENKOŚCIENNYCH O SKOŃCZONEJ DŁUGOŚCI  

Z MIESZANYMI WARUNKAMI BRZEGOWYMI W PODPORACH 

Streszczenie: W niniejszym artykule, zaproponowano uogólnienie metody, opracowanej 

uprzednio przez jednego z autorów, na klasę problemów skośno-symetrycznych stanu 

obciążenia powłok cienkościennych z przesuwnymi uszczelnieniami na ich brzegach. Tak 

zdefiniowany problem brzegowy został zredukowany do układu nieskończonego równań 

całkowych pojedynczych, drugiego rodzaju. Zaproponowano efektywną metodę numeryczno-

analityczną do obliczenia naprężeń w powłokach. Wyniki przeprowadzanych badan zostały 

zilustrowane graficznie. Okazało się, że wzrost względnych naprężeń obwodowych zachodzi 

wraz ze zmniejszaniem się grubości powłoki kołowej, ponadto wzrasta między centralna 

odległość pomiędzy wewnętrzną oraz zewnętrzna powierzchnią cylindryczną, wzrasta także 

eliptyczność wewnętrznej powierzchni cylindrycznej. 

 

Słowa kluczowe: równania całkowe (z całkami pojedynczymi), stan skośno-symetryczny, stan 

obciążenia, powłoki cienkościenne 

SKEW-SYMMETRIC ELASTICITY PROBLEM FOR A THICK-

WALLED SHELL OF FINITE LENGTH WITH MIXED BOUNDARY 

CONDITIONS ON ITS BASES 

Summary: In the present paper, a method proposed by one of the authors is extended to a class 

of skew-symmetric problems of the stressed state of a thick-walled shell with a sliding sealing 

of its ends. The given boundary value problem is reduced to an infinite system of singular 

integral equations of the second kind. An effective numerical-analytical method is proposed to 

compute the stresses in shells. The results of these investigations are illustrated graphically. It 

is found that a growth of the relative circumferential stress occurs as the circle shell thickness 

decrease, the intercentral distance between inner and outer cylindrical surfaces increases and 

the ellipticity of an inner cylindrical surface increases. 
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1. Introduction 

The problem of stress concentration in modern mechanical engineering is highly 

relevant because it is related to reliability and durability of the designed structures, as 

well as elements of such structures. Stress raisers in structures can occur as a result of 

material composition imperfections (cavities, flaws, foreign inclusions) or they can be 

caused by technological and structural needs (holes, cuts, etc.). In both cases, 

analyzing the effect of single and multiple stress raisers, as well as their mutual effect 

on a state of stress of structural components is very important. The accurate analysis 

of stress states in machine components and structural elements near stress raisers 

demands a three – dimensional problem statement [2, 3, 18÷22].  

An effective method of solving three-dimensional problems for the layer (cylinder) 

is the A.I. Lurie’s method of homogeneous solutions (HSM) [17]. With this method 

the problem of the stressed state of a layer weakened by stress raisers have been 

considered [10, 13]. Another effective method for the three-dimensional problems for 

a layer is the eigen-vector function method. This method has been employed for 

solving Kirsch’s problem for an elastic layer [12]. Another approach to solving the 

problem of the stressed state of thick-walled orthotropic cylinders on the basis of 

three-dimensional equations of elasticity theory proposed by [11]. The HSM is 

efficient in the construction of a set of partial solutions for the layer (cylinder) having 

any boundary conditions on its bases. In the case of the mixed on the layer bases 

(sliding fixed ends or the bases are covered with diaphragms that are absolutely rigid 

in their planes and are flexible in out-of-plane direction [15]), the resulting boundary 

value problem becomes somewhat simpler. Such problems are also called periodic 

with respect to one of the coordinates. The procedure for solving such periodic 

problems of the theory of elasticity and electroelasticity for a piecewise homogeneous 

cylinder, different from Lur’ye’s approach was proposed by [5], where a set of 

symmetric (with respect to the middle surface) problems of the theory of elasticity 

and electroelasticity has been solved. By using the above approach, some skew-

symmetric problems of the theory of elasticity for a layer with sliding fixed ends and 

weakened by one stress raiser have been solved by [6, 14]. The stress analysis of 

stretching and bending of layers having homogeneous boundary conditions with 

respect to stresses on the layer bases and weakened by through-thickness cracks (cuts) 

has been considered by [7, 8]. 

The symmetric boundary value problem of the stress analysis for an equilibrium of 

layer with end-supports covered by diaphragms and weakened by several loaded stress 

raisers has been investigated by [9]. 

In this paper, the thick-walled isotropic shell of finite length is considered.  

A distinctive feature of the present investigation lies in the fact that the homogeneous 

solutions are constructed with the use of the procedure proposed by one of the authors 

[5], without invoking the very tedious Lur’ye’s symbolic method. Furthermore, one-

dimensional singular integral equations [16] or more precisely, an infinite system of 

such equations are used for solving the three-dimensional boundary value problem for 

a cylindrical body.  

The conducted numerical investigations have shown a rapid convergence of the 

solution of the system of singular integral equations throughout the entire range of the 

“thickness” coordinate. Thus the proposed procedure actually reduces the involved 

boundary value problem dimensionality by two. 
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2. Problem statement and method of solution 

Let us consider the thick-walled isotropic shell of finite length 3h x h− ≤ ≤  , which 

cylindrical surface directrices are sufficiently smooth contours (Fig. 1). 

 

Figure 1.  The thick-wall isotropic cylindrical shell of finite length 

Let a surface load (N, T, Z) be applied on the cylindrical surfaces of the shell.  

We assume that the components of the given loading are expanded into Fourier series 

in the 3x  coordinate on [ ]h,h− . Let the following conditions hold on the shell ends: 

( ) ( ) ( )3 1 2 13 1 2 23 1 2 0u x , x , h x , x , h x , x , h± = σ ± = σ ± =  (1) 

The components of the displacement vector can be written in the form: 

( )
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0
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∞
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where 1 2i ,=  and ( ) ( )2 1 2k k / hγ = + π . The above representations of the 

displacement vector satisfy automatically conditions (1) on the ends of the shell. 

After separating the variables in the Lame equations, we have obtained the following 

system of equations: 

( )

3
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1 2
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0

0
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/ x , i=1,2, ,
−

κ + σ∂ θ =
κ + σγ θ =

κ = ∆ − γ ∆ = ∂ + ∂
θ = ∂ + ∂ − γ

∂ = ∂ ∂ σ = − ν

 (3) 

which can be integrated in the following manner. Taking into account that 
kθ   

is a metaharmonic function, we introduce an arbitrary solution to the equation 
2 0k kκ ψ =  and put 

k k kθ = κ ψ . This provides a way to obtain the following: 
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( )
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where 
k k,ϕ Φ  are arbitrary metaharmonic functions. Then we require that the 

expressions (4) satisfy the equality 
k k kθ = κ ψ . This leads to the following 

representations: 
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 (5) 

The formulas (2) and (5) give the expressions for elastic displacements in the shell  

in terms of the functions 
k k,ϕ ψ , and 

kϕ  (vortex solution) describes a rotation  

of an element about the axis 
3 2 1 1 20 k k kx : u u∂ − ∂ = σ∆ϕ . 

The integral representations of the functions 
kθ , 

kϕ  and 
kψ , coordinated among 

themselves according to the relations (3) and (4), are taken in the form: 
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where ( )n kK rγ  is the Macdonald function of the order n , ds  – is an arc element of 

contour L ; the densities ( )jk jp ζ , ( )jk jq ζ , ( )*

jk jq ζ  are not yet known. 

The boundary conditions on the cylindrical surfaces of shell are written in the complex 

form as follows: 

( ) ( ) ( )
( )

2

11 22 22 11 12

13 23

2 2i

i

e i N iT

Re e i Z

ψ

− ψ

σ + σ − σ − σ + σ = −
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 (7) 

where ψ  is an angle between the outward normal to the cylindrical surface  

and the 
10x  axis.  
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Using Hook’s law and the formulas (5), one can represent the conditions (7)  

in the following form: 

( ) ( )

( )
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 (8) 

3. The system of singular integral equations 

By using the passage to the limit and the representations (6), the boundary value 

problem (8) is reduced to the following system of six singular integral equations  

(for each fixed value of k). 
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Here 
j ikω  are the unknown densities to be determined. 

4. The results and discussion 

As an example, let us consider a shell, with the directrices of cylindrical surfaces in 

the form of an ellipse: 

1 11 11 1 12 12 1 1

2 21 21 2 22 22 2 2

0 2

0 2
x

L : R cos ,  R sin , ;

L : R cos l ,  R sin , ,

ξ = ϕ ξ = ϕ ≤ ϕ ≤ π
ξ = ϕ + ξ = ϕ ≤ ϕ ≤ π

 

Let a load 
3N Px=  ( )P const=  be applied on the cylindrical surface  

with the directrix 
1L  and there is no load on the cylindrical surface with the directrix 

2L . In the numerical implementation of the developed procedure, the system of 

integral equations was reduced to the system of linear algebraic equations  

by the numerical mechanical quadrature method [1, 4]. 

To characterize the state of stress on the internal cylindrical surface, the following 

stress was calculated: 

2 2

11 22 122sin cos cos sin ,

.

θθσ = σ θ + σ θ − σ θ θ
θ = ψ − π

 (10) 

The numerical procedure of the developed method involves the following steps: at 

first, the system of the integral equations (9) was solved, then the Fourier coefficients 

of the stress tensor 
( )k

i jσ  were determined, and thereafter – unknown stresses on the 

internal cylindrical surfaces were calculated. 

On the Figs. 2-10 the diagrams of the distribution of the relative circumferential stress 

1 / Pθθσ = −σ  along the internal cylindrical surface are shown: 
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1) Along the “thickness” coordinate 
3x h  at the point where the above stress 

takes on the maximum value; 

2) Along the contour of the directrix of the cylindrical surface.  

Numerical results were obtained for Poisson’s ratio 0 15.ν = . Further, under the 

approximate solution we will understand the results obtained by the method proposed 

in this article, and under the exact solution - the solution of the axisymmetric problem, 

which was obtained by the method of series [13]. 

Let assume for the definiteness that the contour 
2L  is the directrix for the internal 

cylindrical surface, and 
1L  is the directrix for the external cylindrical surface. Let 

xl  

be the distance between the directrix centres, when the above centres are located on 

the 
10x -axis.  

 

Figure 2.  Distribution of the relative 

circumferential stress over the thickness 

of the circular shell with the inner 

circular cylindrical surface 

 

Figure 3.  Distribution of the 

relative circumferential stress along 

the directrix of the inner circular 

cylindrical surface for the circular 

shell 

The data given in Figs. 2, 3 refer to the shell with the geometry 
11 12 2R R ,= =  

21 22 1R R ,= =  2h = . 

The curves 1, 2, 3 and 4 (Fig. 2) were constructed along the “thickness” coordinate at 

the point 
2 0ϕ =  for 

21 0 0 25 0 5 0 75xl / R ; . ; . ; .=  respectively. The points on the curve 

1 correspond to the exact solution of the axisymmetric problem. It should be noted a 

good agreement between the exact and approximate solutions. Fig. 3 shows the 

distribution of the circumferential stress 
1σ  along the directing contour of the 

cylindrical surface at the section 
3 0 98x / h .= , which mechanical and geometrical 

parameters are similar to the curves, shown on the Fig. 2. 
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Figure 4.  Distribution of the relative 

circumferential stress over the thickness 

of the circular shell with the inner 

circular cylindrical surface 

 

Figure 5.  Distribution of the 

relative circumferential stress over 

the thickness of the circular shell 

with the inner elliptic cylindrical 

surface 

 

The curves 1, 2, 3 (Fig. 4) were constructed for the shell with the following data: 

2h = , 
11 12 2R R ,= =  

21 22 1 1 8 1 9R R ; . ; .= =  respectively, at point 
2 0ϕ =  along the 

“thickness” coordinate. Fig. 5 shows the distribution of the stress 
1σ  at the point 

2 0ϕ =  along the “thickness” coordinate of the shell with the following data: 2h = , 

11 12 2R R ,= =  
21 221 0 1R ,R .= = . The curves 1-4 were constructed at 

0 0 25 0 50 0 75xl ; . ; . ; .=  respectively.  

Fig. 6 shows the distribution of the stress along the directrix of the cylindrical surface 

at the section 
3 0 98x / h .= . The curves 1, 2, 3 were constructed for the shell with the 

following data: 2h= , 
11 12 212 1R R ,R ,= = =  

22 0 1 0 3 0 5R . ; . ; .=  respectively. 

Fig. 7 shows the distribution of the stress 
1σ  at the point 

2 0ϕ =  along the “thickness” 

coordinate of the shell with the following data: 2h = , 
11 2R ,=  

12 1R ,=  

21 221 0 1R ,R .= = . The curves 1-4 were constructed at 0 0 25 0 50 0 75xl ; . ; . ; .=  

respectively. 
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Figure 6.  Distribution of the relative 

circumferential stress along the 

directrix of the inner elliptic 

cylindrical surface for the circular 

shell. 

 

Figure 7.  Distribution of the relative 

circumferential stress over the 

thickness of the elliptic shell with the 

inner elliptic cylindrical surface. 

 

Figure 8.  Distribution of the relative 

circumferential stress along the 

directrix of the inner elliptic 

cylindrical surface for the elliptic shell 

Figure 9.  Distribution of the relative 

circumferential stress over the 

thickness of the elliptic shell with the 

inner elliptic cylindrical surface 

 

Fig. 8 shows the distribution of the stress along the directrix of the cylindrical surface 

at the section 
3 0 98x h .= . The curves 1, 2, 3 were constructed for the shell with the 

following data: 2h = , 
11 12 212 1 1R , R , R ,= = =  

22 0 5 0 3 0 1R . ; . ; .=  respectively. 

Fig. 9 shows the distribution of the stress 1σ
 at the point 

2 0ϕ =  along the “thickness” 

coordinate of the shell with the following data: 2h= , 
11 1R ,=  

12 2R ,=  
22 0 1R . ,=  

21
0 3 0 5 0 7 0 9R . ; . ; . ; .= ; respectively. 
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Figure 10.  Distribution of the relative circumferential stress along the directrix of 

the inner elliptic cylindrical surface for the elliptic shell. 

 

Fig. 10 shows the distribution of the stress along the directrix of the cylindrical surface 

at the section 
3 0 98x h .= . The curves 1, 2, 3 were constructed for the shell with the 

following data: 2h = , 
11 1R ,=  

12
2R ,=  

22
0 1R . ;=  

21
0 3 0 5 0 7R . ; . ; .= ; respectively. 

5. Conclusions 

Based on the conducted numerical investigations, the following conclusions can be 

made: 

1. A growth of the relative circumferential stress occurs as the intercentral distance 

xl  increases. 

2. A decrease of the circle shell thickness produces the sharp increase of the relative 

circumferential stress. 

3. For the inner cylindrical surface of circular or elliptic cross sections, the maximum 

value of the relative circumferential stress takes on the maximum value at point 

( )2 0ϕ = π  for 0xl = . If the inner cylindrical surface is displaced above the 

mentioned geometries ( )0xl > , the maximum value of the relative circumferential 

stress shifts along the inner directrix. The actual value of 
2ϕ  where the maximum 

of the relative circumferential stress will occur depends upon the geometry of the 

shell, materials from which it is manufactured, as well as upon the applied loading. 

4. Comparison of results obtained with the use of the developed procedure and the 

series method illustrates a sufficiently good convergence of the proposed 

algorithms and reliability of the numerical results based on these algorithms. The 

deviation between the above-mentioned approximate and exact results was not 

more than 2%. This provides a way to apply the proposed procedure to the analysis 

of the stressed state of a thick-walled shell with a sliding sealing of its ends 

containing an inclusion made from another material and (or) weakened  

by a through-thickness cut having sufficiently arbitrary cross sectional geometry. 
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